
 

1 
https://doi.org/10.5281/zenodo.15287507 

UNIT I    LOGIC AND PROOFS 

========================================================================================== 

 
Mathematical Logic is the science of reasoning used to represent the statements to communicate the 
facts.  It provides rules by which one can determine whether any particular argument is valid or not. 
 
A proposition is defined as statement, that is either true or false but not both.  It is used to describe any 
Mathematical structure.   Consider the following examples: 

i. Delhi is the capital of India 
ii. 0 1  
iii. The problem is simple 

 
Here i. and ii.  are true and false respectively.  Hence they are called as proposition or statement. But iii.  is 
neither true nor false.  Hence it is not a statement. 
 
There are two types of statements:   
 
i.  Simple Statement or atomic statement    ii.  Compound statement or molecular statement 
 
A statement which cannot be divided into further meaningful simple statements is called atomic 
statement.  Example:  i.  5 is a prime number     ii.  Raja is a boy  
 
A statement which consists of more than one atomic statements is called a compound statement.  They 
are formed by combining atomic statements by the use of connectives like and, or, etc.  
 
Example:  Raja is a boy and he is studying B.E. 
 
Truth value of a proposition: 
 
English alphabets are used to represent simple statements and are called propositional variables.  If a 
proposition is true then its truth value is T  and if a proposition is false, its truth value is F , which are 
called propositional constants. 
 
Connectives:  The words by which atomic statements are combined to form a compound statements, 
with the help of ‘or’, ‘and’, ‘not’, ‘if’ are called connectives.  We will discuss some of the connectives: 
 
TRUTH TABLE 
 
It is a way of summarizing the truth values of logical statements and indicates the truth values of 
compound propositions.  The number of columns depends on the propositional variables and connectives 
used and number of rows depends on simple propositions.  For n  simple propositions the number of rows 
will be 2n .  
 
LOGICAL OPERATIONS 
 
Negation: (  or  ) The negation of a statement P  is written as P  or  P   and read as ‘not P ’.  The 
truth table for negation is given here.  
 

P   P  or  P  Example:  Let P :  Ram is a rich man 

Then P :  Ram is not a rich man / Ram is a poor man / It 
is not the case Ram is rich man 

Note:  Negation is a unary operator   

T  

F  

F  

T  

 
 
Conjunction: ( AND  )  The conjunction of two statements P  and Q  is written as ‘ P Q ’ and is read as 

‘ P  and Q ’.  It has truth value True only when both P  and Q  are True.  Otherwise False.  The truth table 

for conjunction is given here.  
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P  Q  P Q  Example:  Let P :  It is hot.   Q :  It is sunny    

Then P Q :  It is hot and it is sunny. 

Note:  Negation is a binary operator and it is 
symmetric. 

To form P Q  the statements P  and Q  need not be 

related   

T  

F  

F  

T  

F  

T  

F  

T  

F  

F  

F  

T  

 
Disjunction: ( OR  )  The disjunction of two statements P  and Q  is written as ‘ P Q ’ and is read as ‘ P  

or Q ’.  It has truth value False only when both P  and Q  are False.  Otherwise True.  The truth table for 

disjunction is given here.  
 

P  Q  P Q  Example:  Let P :  I will go to college.   Q :  I will go to 

cinema.    

Then P Q :  I will go to college or cinema. 

Note:  Disjunction is a binary operator and it is 
symmetric. 

   

T  

F  

F  

T  

F  

T  

F  

T  

T  

T  

F  

T  

 
Implication or Conditional Statement: ()  Let P  and Q  be any two statements.  Then ‘ P Q ’ is read 

as ‘if P  then Q ’.  It has truth value False only when P  is True and Q  is False.  Otherwise True.  The truth 

table for the conditional statement is given here.  
 

P  Q  PQ  Example:  Let P :  There is a flood.   Q :  The crop will 

be destroyed.    

 

Then P Q :  If there is a flood, then the crop will be 

destroyed. 

 

Note:  is a binary operator and it is not symmetric   

T  

F  

F  

T  

F  

T  

F  

T  

F  

T  

T  

T  

 
Equivalence of Biconditional Statement: ()  Let P  and Q  be any two statements.  Then ‘ P Q ’ is 

read as ‘ P  if and only if Q ’.  It has truth value True if both P  and Q  are identical.  Otherwise False.  The 

truth table for the biconditional statement is given here.  
 

P  Q  PQ  Example:  Let P :  x is even number.   Q :  x is divisible 

by 2.    

 

Then P Q :  x is even number iff x is divisible be 2. 

Note:  is a binary operator and it is symmetric.   

T  

F  

F  

T  

F  

T  

F  

T  

F  

F  

T  

T  

 
Symbolic form of compound propositions 
 

Example:  Let P : He is rich,  Q: He is happy.   

Write the following in symbolic form.   

                     He is neither rich nor happy.  
Solution:  P Q   

Example:  Let P  be “Roses are red” and Q  be “Violets 

are blue.”   Let S be the statement: 

“It is not true that roses are red and violets are blue.”   
Write S in symbolic form.The symbolic form is  

 S P Q   
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Example:  Let P : It is hot,  Q : It is sunny.   

Write the following in symbolic form.   

                     It is not hot but it is sunny.  
 
Solution:  P Q   

 

Example:  Let P : You will get a good job,   

Q : You study Mathematics well.   

Write the following in symbolic form.   

You will get a good job if and only if you study 

Mathematics well.  
 
Solution:  P Q  

Logical Equivalence: 
 
Definition:  Any two simple propositions P  and Q  are said to be logically equivalent iff they have the 

same truth values.  It is denoted as P Q . 

 
Example:  P  : 2 is even number        Q :  2 2 23 4 5  .  Then P  and Q  are equivalent, since both are true. 

 
Definition:  Any two compound propositions P  and Q  are said to be logically equivalent iff their truth 

values identical for each combination of the truth values of its components.  It is denoted as P Q . 

 
Example:  P  :  R S         Q :  S R  .  Then P  and Q  are equivalent.  This can be verified by the truth 

table. 
 
Statement Formula:  A definite compound statements represented by variables like P , Q , R , ……. is 

called statement formula.  Example:  P  P ,   ( P  Q ). 

 
Example:  Express the statement “Good food is not safety” in symbolic form 
 
Let P  :  Good food is cheap.   Then :S P   Good food is not cheap. 

 
Example :  If  P : Raja is poor and  Q :  Raja is happy, write the following statements in symbolic form. 

i. Raja is rich but happy 

ii. Raja is neither poor nor happy 

iii. Raja is rich or he is both poor and unhappy 

Solution:  i.   P Q                        ii.   P  Q                           iii.   P ( P  Q ) 

 
Example :  Write the negation of the following: 

i.   Mathematics is interesting and Logic is not easy    

ii.  If students do well in the examinations then they will not fail  

i.   Let P  :  Mathematics is interesting. Q :  Logic is easy 

Therefore given proposition is P Q . 

The negation is  P Q P Q      i.e.  Mathematics is not interesting or Logic is easy. 
 

ii.  Let P  :  Students do well in the examinations.      Q :  They will fail 

Therefore given proposition is P Q . 

The negation is    P Q P Q P Q         i.e. Students do well in the examinations and they 

will fail. 
 
Example :  Let  P :  It is hot    and   Q :  It is humid.  Give the verbal sentences for the following symbolic 

                    form:   i.  P           ii.  P Q           iii.  P  Q           iv.   Q   

Solution: 

i.  It is not hot     ii.  It is hot and humid 

iii.  It is hot and it is not humid  iv.  It is humid 
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Inverse, converse and contra positive of a statement 

For any implication statement P Q ,  (Q  whenever P )  

i.         Q P     is called converse 

ii.      P Q     is called inverse 

iii.      Q P     is called contra positive   

 
Note: 
 1. P Q Q P    

 2. P Q P Q     

 3. P Q Q P     

 
Example: What are the contrapositive , converse and inverse of the conditional statement . 

      “ If it is raining, then I get wet”. 
 
   Let P  : It is raining   and   Q  : I get wet. 

                 Contrapositive  :   Q P   If I don’t get wet, then it is not raining 

                 Converse      :    Q P  If I get wet, then it is raining                

                 Inverse     :    P Q   If it is not raining, then I don’t get wet 

 
Example: What are the contrapositive , converse and inverse of the conditional statement . 

     “The Indian cricket team wins whenever it plays first batting”. 
 
Rewriting the statement as “If India plays first batting, then Indian cricket team wins” 

   Let P  : India plays first batting   and   Q  : Indian cricket team wins. 

                 Contrapositive Q P   :   If Indian cricket team do not win, then it is not playing first batting 

                 Converse Q P      :   If Indian cricket team wins, then it plays first batting                

                 Inverse  P Q    :   If India is not playing first batting, then Indian team don’t win 

 
Example: What are the contrapositive , converse and inverse of the conditional statement . 

 
“If you are guilty, then you are punished” 

 
   Let P  : You are guilty   and   Q  : You are punished. 

                 Contrapositive Q P   :   If you are not punished, then you are not guilty 

                 Converse Q P      :   If you are punished, then you are guilty                

                 Inverse  P Q    :   If you are not guilty, then you are not punished 

 

We can form the truth table for inverse, converse and contra positive as shown below:  

p  q  p q  q p  p  q  p q   q p   

T  

T  

F  

F  

T  

F  

T  

F  

T  

F  

T  

T  

T  

T  

F  

T  

F  

F  

T  

T  

F  

T  

F  

T  

T  

T  

F  

T  

T  

F  

T  

T  

 
Do you know?  How many rows are needed for the truth table of the formula 

   P Q R S T       ? 
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Construction of the truth table: 
 

1.  Construct the truth table for     P Q P Q    . 

 

P  Q   P Q   P Q     P Q P Q    

T  T   T  T  T  

T  F  F  F  T  

F  T  T  F  F  

F  F T  F  F  

 

2.  Construct the truth table for    P Q P Q    . 

 

P  Q   P Q  P   P Q      P Q P Q     

T  T  

TTT 

T  F  F  T  

T  F  F  F  F  F  

F  T  T  T  T  T  

F  F  T  T  F  T  

 
A statement formula which is true regardless of the truth values of the statements which replaces the 
variables in it is called a universally valid formula or a Tautology.  Example:  P P .  A formula is a 
tautology if each entry in the final column of the truth table is T . 
 
A statement formula which is false regardless of the truth values of the statements which replaces the 
variables in it is called a contradiction.  Example:  P P .  A formula is a contradiction if each entry in 
the final column of the truth table is F . 
 
A statement formula which is neither a tautology or a contradiction is called a contingency. 
 

Example:  Prove that    P Q P Q    is a contradiction. 

     

P  Q    P Q      P Q P Q    

T  T  T  T  F  F  
T  F  F  T  F  F  
F  T  F  T  F  F  
F  F  F  F  T  F  

 
 

Example:  Using truth table prove that      P Q P R Q R        is a tautology. 

  

P  Q  R   
1 

P R 
2 

(1) (2)  

3 
Q  R  

Q  R  

4   
(3) (4)  

T  T  T  T  T  T  F  F  T  T  

T  T  F  T  F  T  F  T  T  T  

T  F  T  F  T  T  T  F  F  T  

T  F  F  F  F  F  T  T  T  T  

F  T  T  F  T  T  F  F  T  T  

F  T  F  F  T  T  F  T  T  T  

F  F  T  F  T  T  T  F  F  T  

F  F  F  F  T  T   T  T  T  T  
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Example:  Obtain the truth table for the statement      P R Q P Q P       and comment on the 

statement. 

 P  Q  R  P  
P R 
(1) 

Q P  

(2) 

(1) (2)  

(3) 
(3) (2)  

T  T  T  F  T  T  T  T  

T  T  F  F  T  T  T  T  

T  F  T  F  T  T  T  T  

T  F  F  F  T  T  T  T  

F  T  T  T  T  F  F  F  

F  T  F  T  F  F  F  F  

F  F  T  T  T  T  T  T  

F  F  F  T  F  T   F  F  

 

Above table implies that      ,Q P P R Q P      are having equivalent truth values 

 
Equivalence Formulas 
 
Let A  and B  be two statement formulas.  If the truth value of A  is equal to truth value of B , then A  and 
B  are said to be equivalent and is denoted by .BA  
 
Example: P P  ,  P P P      

Note:      is not connective.  If  BA , then  BA   is a tautology. 
 
Definition:  A formula A  is said to tautologically imply a formula B  if and only if A B   is a tautology.  
In this case, we write A B .  
 

Example:  Show that    P Q Q P     by using truth table. 

 

P  Q   P Q  Q  P   Q P   

T     T  

TTT 

T  F  F  T  

T      F  F  T  F  F  

F      T  T  F  T  T  

F      F  T  T  T  T  

 

Here the columns of  P Q  and  Q P   are identical.   

Hence    P Q Q P     is a tautology.   

Hence we can write    P Q Q P    . 

 

Example:  Show that    P Q Q P     by using truth table. 

 

P  Q   P Q  Q  P   Q P    Q P    

T     T  

TTT 

T  F  F  F  T  

T      F  T  T  F  F  T  

F      T  T  F  T  F  T  

F      F  F  T  T  T  F  

 

Here the columns of  P Q  and  Q P    are identical.   

Hence    P Q Q P     is a tautology.   

Hence we can write    P Q Q P    . 
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Note:  Now  P Q  and  Q P    are said to be equivalent. 

 
Some Useful Equivalent Formulas: 
 

P P P   and P P P   Idempotent Law 

P F P   and P T P   Identity Law 

P T T   and P F F   Domination Law 

P P T   and P P F   Negation Law 

 P P Q P    and  P P Q P    Absorption Law 

 P Q P Q     and  P Q P Q     Demorgan’s Law 

   P Q Q P    and    P Q Q P    Commutative Law 

   P Q R P Q R      and    P Q R P Q R      Associative Law 

     P Q R P Q P R       and      P Q R P Q P R       Distributive Law 

 

P Q P Q    and    P Q P Q Q P       

                                         A B C D A C A D B C B D                      Extended Distributive Law 

                                         A B C D A C A D B C B D                      Extended Distributive Law 

 
Solved Problems on Simplification using Equivalences 

 

Example:  Is  P P Q Q        a tautology.  

       P P Q Q P P P Q Q              

                                                                    F P Q Q      

                                                            P Q Q     

                                                            P Q Q      

                                                            P Q Q    

                                                            P Q Q     

                                                           P T   

                                                           T  

 

Example:    Show that    Q P Q P Q         is a tautology. 

          Q P Q P Q Q P Q Q P Q                   
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                                                             Q P T P Q        

                                                                         Q P P Q     

                                                                      T  

 

Example:   Show that         P Q P Q R P Q P R                is a tautology by using 

equivalences. 
 

 
        

        

P Q P Q R P Q P R

P Q P Q R P Q P R

             

           

 

                                                   P Q P Q R P Q P R              

                                                    P Q P Q P R P Q P R                 

                                                  P Q P R P Q P R               

                                           T  

 

Example:  Show that    P Q P Q P         without using truth table. 

          P Q P Q P Q P Q         

                                                                     P Q Q    

                                                            P F   

                                                            P  

 

Example: Show that  P Q   and    P Q P Q    are equivalent. 

       P Q P Q Q P            

                                              P Q Q P          

                                              P Q Q P          

                                              P Q Q P     

                                              P Q Q P Q P             

                                                  P Q Q Q P P Q P                 

                                                  P Q Q Q P P Q P                 

                                              P Q T T Q P             

                                              P Q Q P            

                                              P Q P Q     

 
 

Example: Show that    P Q R Q    and  P R Q   are equivalent. 
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S P Q R Q

P Q R Q

P R Q

P R Q

P R Q

   

     

   

   

  

 

Example:  Prove without using truth table          P Q P Q P Q Q P P Q          . 

 In the previous example, we have proved that       P Q P Q P Q       

 Consider        P Q P Q P Q P Q         

                                                                 P Q P P Q Q             

                                                                     P P Q P P Q Q Q               

                                                                 F Q P P Q F             

                                                                 Q P P Q           

                                                                 Q P P Q     

 Therefore        P Q P Q Q P P Q        

 

Example:   Without using the truth table, prove that     P Q R Q P R       

  

   

 

 

 

 

 

P Q R P Q R

P Q R

P Q R

Q P R

Q P R

Q P R

     

   

  

   

   

  

 

 

Example: Show that       P Q R P Q R P Q R          

      .........(1)P Q R P Q R        

     P Q R P Q R       

                                                         P Q R      

                                                         P Q R     

                                                         P Q R     

                                                          .............(2)P Q R    
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 From (1) and (2)      P Q R P Q R P Q R          

  
 

Example:   Prove that       P Q R Q P R Q       

         P Q R Q P Q R Q          

                                                                   P R Q     

                                                                   P R Q     

                                                                   P R Q    

Example:   Show that        P Q R Q R P R R          without using truth table. 

 

           

    

   

P Q R Q R P R P Q R Q P R

P Q R P Q R

P Q P Q R

T R

R

              

      

       

 



 

 
Functionally Set of Connectives 
 

We introduce a new connective NAND   (combination of NOT and AND) defined by  P Q P Q    

and another connective NOR   (combination of  NOT and OR) defined by   P Q P Q   .   

Thus the connectives   and   are defined in terms of ,   and  . 

 
A set of connectives is said to be functionally complete if every formula can be expressed in terms of an 
equivalent formula containing the connectives only from this set. 
 

Example:       , , ,     and  ,    are functionally complete. 

 
 
Duality Law:  Two formulas A  and *A  are said to be duals of each other if either one can be obtained 
from the other by replacing   by  ,   by  ,  F  by T ,  T  by  F .   
 

Example:  The dual of   P R T    is   P R F  . 

 
Note:  If  A B   then  * *A B  
 
Principal Disjunctive and Principal Conjunctive Normal Forms 
 
Given a number of variables, the conjunction in which each variable or its negation, but not both, occurs 
only once are called minterms.  For variables P , Q  the minterms are  P Q ,  P Q , P  Q ,  P  Q . 

 
Given a number of variables, the disjunction in which each variable or its negation, but not both, occurs 
only once are called maxterms.  For variables P , Q  the maxterms are  P Q ,  P Q , P Q ,  P Q . 

 
A formula consisting  disjunction of min terms and equivalent to a given formula is known as PDNF. 
 
A formula consisting  conjunction of max terms and equivalent to a given formula is known as PCNF. 
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Note:   
To get min terms in the disjunction, the missing factors are introduced through the complement law 
P P T   and then apply distributive law. 
 
To obtain PCNF of A , apply De Morgan’s laws to the PDNF of A . 

 PCNF of S PDNF of S     and    PDNF of S PCNF of S    

 
To obtain the PDNF of the statement S , write the disjunction of minterms corresponding to the truth 
value T  and to find the PDNF of the statement S , write the disjunction of minterms corresponding to 
the truth value F . 
 
 
Example:   Find the PDNF and PCNF of ( P   Q )( P   Q ) using truth table. 

 

Let     S P Q P Q      

     

P  Q  P Q   P Q  P  Q  ( P Q )( P Q ) 

T  T  F  F  F  F  T  

T  F  F  T  T  T  T  

F  T  T  F  T  T  T  

F  F T  T  T  F  F  

 

PDNF of S    is       P Q P Q P Q         

 

PDNF of S   is   P Q    

 

PCNF of S  is  PDNF of S   

 

PCNF of  S  is     P Q P Q       

 

Example:   Obtain PCNF & PDNF of        P Q R P Q R        

 Let       S P Q R P Q R         

                               S P Q R P Q R         

                                                  P P P Q R Q R P Q R Q R               

                                         F P Q R Q R P F          

                                         P Q R Q R P        

 

PDNF of S    is     P Q R Q R P         

 

PDNF of S  is            P Q R P Q R P Q R P Q R P Q R P Q R                     

 

PCNF of S  is  PDNF of S   

 

PCNF of  S  is              P Q R P Q R P Q R P Q R P Q R P Q R                     

                                       P Q R P Q R P Q R P Q R P Q R P Q R                    
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Example:   Obtain PDNF of  P Q R P     & hence find its PCNF. 

    P Q R P P Q R P           

                                              P Q R P        

                                                P Q P R P          

                                                P Q R P       

                                                P Q F R P F               

                                                    P Q R R R P Q Q                 

                                                    P Q R P Q R R P Q R P Q                       

                                                   P Q R P Q R R P Q R P Q                       

                                                   P Q R P Q R R P Q R P Q                 

 

PCNF of S  is      P Q R P Q R P Q R            

PCNF of S  is           P Q R P Q R P Q R P Q R P Q R                

PDNF of S  is  PCNF of S   

PDNF of S  is          P Q R P Q R P Q R P Q R P Q R                   

                                   P Q R P Q R P Q R P Q R P Q R                     

 
 
 

Example:   Obtain the PDNF and PCNF of     P Q Q P   .  

 

 

       

     

       

   

   

P Q Q P P Q Q P

P Q Q P Q P

P Q Q Q P P Q P

P Q F F Q P

P Q Q P

        

       

         

      

    

 

 
 

Therefore PDNF of  S is     P Q Q P      

 

Therefore PDNF of  S is      P Q P Q     

 

Therefore PCNF of  S is   (PDNF of S)  i.e.         . .P Q P Q i e P Q P Q            

 
Another method using truth table: 
     

P  Q  P Q  Q P  ( P Q )( QP ) Minterms 
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T  T  T  T  T  P Q  

T  F  F  T  F   

F  T  T  F  F   

F  F  T  T  T  P Q   

 
The rows 1 and 4 has the truth value T  and the corresponding minterms are ( P Q )  and  ( P Q ) 

 

Therefore PDNF of  S is     P Q Q P      and hence PCNF of  S is      P Q P Q     

 
 
 
 

Example:   Obtain the PCNF of     P R Q P    . 

 

 

         

     

     

        

       

   

     

   

P R Q P P R Q P P Q

P R Q P P Q

P R F Q P F P Q F

P R Q Q Q P R R P Q R R

P R Q P R Q Q P R Q P R

P Q R P Q R

P R Q P R Q Q P R

P Q R P Q R

           

       

          

             

             

       

         

       

 

 

Therefore the PCNF is           P R Q P R Q Q P R P Q R P Q R                  

 
Another method using truth table: 
  

P Q  R QP P PR    P R Q P     Maxterms 

T  T  T  T  F  T  T   

T  T  F  T  F  T  T   

T  F  T  F  F  T  F   P Q R    

T  F  F  F  F  T  F   P Q R    

F  T  T  F  T  T  F   P Q R   

F  T  F  F  T  F  F   P Q R   

F  F  T  T  T  T  T   

F  F  F  T  T  F  F   P Q R   

 
The rows 3, 4, 5, 6 and 8 have the truth values F .  The corresponding maxterms are given above. 
 

Therefore the PCNF is          P Q R P Q R P Q R P Q R P Q R                 

 

Example:   Find the PCNF and PDNF of       P Q P R Q R       without using truth tables.  
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S P Q P R Q R

P Q T P R T Q R T

P Q R R P R Q Q Q R P P

P Q R P Q R P R Q P R Q Q R P Q R P

P Q R P Q R P R Q P R Q

      

         

            

                   

             

 

  

The PDNF of S is        P Q R P Q R P R Q P R Q              

 

The PDNF of  S  is        P Q R P Q R P R Q P R Q              

  
PCNF of S is  (PDNF of  S) : 

       P Q R P Q R P R Q P R Q                 

 

              P Q R P Q R P R Q P R Q                

 

Example:   Find the PDNF and PCNF of     P Q R P Q R              without using truth tables. 

 

   

   

       

               

           

   

   

S P Q R P Q R

P Q R P Q R

P Q P R P Q P R

P Q R R P R Q Q P Q R R P R Q Q

P Q R P Q R P R Q P R Q P Q R P Q R

P R Q P R Q

P Q R P Q R

             

             

         

                               

                      

    

                P Q R P Q R P Q R P Q R          

 

 
PCNF of  S  is 

           P Q R P Q R P Q R P Q R P Q R P Q R                     

 
PCNF of  S  is     P Q R P Q R       

 

PDNF of  S  is  (PCNF of  S )     P Q R P Q R           

                                                          P Q R P Q R        

                
Alternate Method: 
 

   

   

        

   

   

S P Q R P Q R

P Q R P Q R

P P Q R P P Q R Q R Q R

F P Q R P Q R F

P Q R P Q R
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PDNF of S  is     P Q R P Q R       

 
PDNF of  S  is  

           P Q R P Q R P Q R P Q R P Q R P Q R                     

 
PCNF of  S  is  (PDNF of  S ) 

           P Q R P Q R P Q R P Q R P Q R P Q R                        

           P Q R P Q R P Q R P Q R P Q R P Q R                     

 

Example:    Obtain the PDNF and PCNF of     P Q P Q    .    

 

            P Q P Q P Q P Q P Q P Q                    

     

       

       

       

   

   

P Q P Q P Q P Q

P Q P Q P Q P Q

P Q P Q P Q P Q

P Q P Q

P Q P Q

T

              

                

               

      

        



 

 
Since the given formula is a tautology, we cannot obtain its PCNF.  Since the result of the formula 
 is T , the PDNF will contain all the 4 possible minterms.  Therefore the PDNF is 

       P Q P Q P Q P Q          

 
Note:  Similarly if a given formula is a contradiction, then only PCNF exists. 
 
 
Theory of Inference: 
 
Let A  and B  be two statement formulas.  Then B   logically follows from A  (or)  B  is a valid conclusion 
of the premise A  iff  A B   is a tautology and is denoted as A B . 
 

A set of premises 1 2, , ...... nH H H   derives a conclusion C   iff   1 2 ...... nH H H C    .  This can be 

verified by constructing the truth table. 
 
Example:  Determine whether the conclusion :C Q  follows from the premises 

1 :H P , 
2 :H P Q  

 

P  :C Q  
1 :H P  

2 :H P Q  

T  T  F  T  

T  F  F  T  

F  T  T  T  

F  F  T  F  

 
 
The premises 

1 :H P  and 
2 :H P Q  have truth value T  in third row and the conclusion  is also have 

the truth value T  in the same row.  Hence the conclusion :C Q  is valid from the given premises. 
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This method is tedious for large number of variables.  So when a conclusion is derived from a set of 
premises by using the rules of reasoning, then such a process is called a formal proof and the argument is 
called valid argument.  There are three rules of inference. 
 
Rule P   :  A premises may be introduced at any stage of derivation 
Rule T   :  A formula S  may be introduced in a derivation if S  is tautologically implied by the preceding  
                    formulae in the derivation   
Rule CP :  If Q  is derived from P  and a set of premises, then P Q  may be derived from the set of  

                     premises alone. 
 
Note:   

 Indirect method or proof by contradiction means, If C  is the conclusion, introduce C  as an 
additional premises and derive the conclusion as F .  

 The premises are inconsistent, if the conclusion(their conjunction) is F .  Otherwise consistent. 
 
 
Example:  Give indirect proof of the theorem “If  3 2n  is odd, then n  is odd” 
 
 Suppose n  is even.  Let 2n k . 
 

 3 2 3(2 ) 2 2(3 1)n k k Even      , a contradiction. 

 
 Hence the given statement is true. 
 
   List of rules of implications: 

1I  

,

,

,

P P Q Q

Q P Q P

Q P Q Q

 

   

 

 

Modus Ponens 
 

Modus Tollens 

2I  ,P Q Q R P R     Hypothetical Syllogism 

3I  P Q P Q    Equivalence 

4I  
 

 

P Q P Q

P Q P Q

   

   

 De Morgan’s Law 

5I  P Q Q P     Contra Positive 

6I  ,P Q P Q   Implication 

7I   ,P R Q R P Q R      Implication 

8I  

P Q P

P Q Q

 

 
 Simplification 

9I  

P P Q

Q P Q

 

 
 Addition 

10I  ,P P Q Q    Disjunction Dilemma 

11I  
,P P Q Q    

,Q P Q P    
Disjunctive Syllogism 

12I  

P P Q

Q P Q
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P Q P

P Q Q

  

   

 
 

 
 
Worked Examples on Equivalence and Implication  
 

Example:   Show that P Q ,  Q R ,  R ,  P R S    R S  .    

 
    Step Premises Rule Reason 

1 P Q  P  Given Premises 

2 Q R  P   Given Premises 

3 P R  T  (1),(2) Hypothetical 

4 R P  T  (3) Contrapositive 

5 R  T  Given Premises 

6 P  T  (5),(4) Modus Ponens 

7  P R S   P  Given Premises 

8  P R S    T  (7) Implication 

9 R S  T  (6), (8) Modus ponens 

 
 

Example:   Show that S  is valid inference from the premises  P Q ,  Q R , S P  and R .    

 
    Step Premises Rule Reason 

1 Q R  P  Given Premise 

2 Q R   T  (1) Equivalent 

3 R  P   Given Premise 

4 Q  T  (2), (3) Modus Tollens 

5 P Q  P   Given Premise 

6 P  T  (4), (5) Modus Tollens 

7 S P   P  (6), (7) Modus Tollens 

8 S  P  Given Premises 

 
 

Example:   Show that    , ,P Q Q R R P        

 

       Step Premises Rule Reason 

1  P Q   P  Given Premises 

2 P Q   T  De-Morgan’s Law 

3 P Q  T  (2) Equivalence  

4 Q R   P  Given Premises 

5 Q R  T  (4) Equivalence  

6 P R  T  (3), (5) Hypothetical Syllogism 

7 R  P  Given Premises 

8 P  T  (6), (7) Modus Tollens 
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Example:    Show that SR  follows logically follows from the premises C D ,   C D H  ,  

                        H A B   ,    A B R S   . 

 

       Step Premises Rule Reason 

1  C D H   P  Given Premises 

2  H A B    P  Given Premises 

3    C D A B    T  (1), (2) Hypothetical Syllogism 

4    A B R S    P  Given Premises 

5    C D R S    T  (3), (4) Hypothetical Syllogism 

6 C D  P  Given Premises 

7 SR  T  (5), (6) Modus Ponens 

Example:    Show that R S  is logically derived from the premises ( )P Q S  ,  R P   and  

                       Q . 

 

       Step Premises Rule Reason 

1 R P   P  Given Premises 

2 R  AP  Additional Premises 

3 P  T  (1), (2) Modus Ponens 

4 ( )P Q S   P  Given Premises 

5 Q S  T  (3), (4)  Modus Ponens 

6 Q  P  Given Premises 

7 S  T  (5), (6)  Modus Ponens 

 R S  CP  (2), (7) 

 
 

Example:    Show that  R P Q   is a valid conclusion from the premises , , , .P Q Q R P M M                    

 

       Step Premises Rule Reason 

1 M  P  Given Premises 

2 P M  P  Given Premises 

3 P  T  (1), (2) Modus Tollens 

4 P Q  P  Given Premises 

5 P Q   T  (4) 

6 Q  T  (3), (5) Modus Ponens 

7 Q R  P  Given Premises 

8 R  T  (6), (7) Modus Ponens 

9  R P Q   T  (4), (8) 

 
 

Example:   Show that D  can be derived from the premises    A B A C   ,    B C   and  D A . 



 

19 
https://doi.org/10.5281/zenodo.15287507 

 

       Step Premises Rule Reason 

1    A B A C    P  Given Premises 

2  A B  T  (1) Simplification 

3  A C  T  (1) Simplification 

4 B A   T  (2) Contra positive 

5 C A   T  (3) Contra positive 

6  B C A    T  (4), (5) Simplification 

7  B C A    T  (6) De Morgan’s Law 

8  B C   P  Given Premises 

9 A  T  (7), (8) Simplification 

10  D A  P  Given Premises 

11  D A A   T  (9), (10) Conjunction 

12    D A A A    T  (11) Distributive Law 

13  D A F   T  (12) Simplification 

14 D A  T  (13) Simplification 

15 D  T  (14) Simplification 

 
 

Example:   Show that    P Q R S   ,      Q T S U   ,  T U   and  P R  P  . 

 

       Step Premises Rule Reason 

1    P Q R S    P  Given Premises 

2 P Q  T  (1) Simplification 

3 R S  T  (1) Simplification 

4    Q T S U    P  Given Premises 

5 Q T  T  (4) Simplification 

6 S U  T  (4) Simplification 

7 P T  T  (2), (5) Hypothetical Syllogism 

8 R U  T  (3), (6) Hypothetical Syllogism 

9 P R  P  Given Premises 

10 P U  T  (9), (8) Hypothetical Syllogism 

11 U P   T  (10) Contra positive 

12 T P   T  (7) Contra positive 

13  T U P    T  (11), (12) Implication 

14  T U P    T  (13) De Morgan’s Law 

15  T U   P  Given Premises 

16 P  T  (15), (14) Modus Ponens 
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Example:   Apply indirect method, to prove R  is the conclusion from the premises P Q , 

                     Q R , P R . 

 

       Step Premises Rule Reason 

1 R  P  Added Premises 

2 Q R  P  Premises 

3 Q  T  (2),(1) Modus Tollens 

4 P Q  P  Given Premises 

5 P  T  (4), (3) Modus Tollens 

6 P R  P  Given Premises 

7 P R   T  (6) Implication 

8 R  T  (5),(7) Modus ponens 

9 F  T  (1),(8)  

 
 
Example:   Show that the premises   A B C  ,   D B C   and A D  are inconsistent. 

                     
 

       Step Premises Rule Reason 

1 A D  P  Given Premises 

2 A  T  (1) Simplification 

3 D  T  (1) Simplification 

4  A B C   P  Given Premises 

5  B C  P  (2), (4) Modus Ponens 

6 B C   T  (5)  Equivalent 

7  D B C   P  Given Premises 

8  B C D    T  (7) Contra positive 

9  B C D    T  (8) Simplification 

10 D  T  (6), (9) Modus Ponens 

11 D D  T  (3), (10) 

12 F  T  (11) Implication 

 
 
Example:   Show that the premises  R Q ,  R S ,  S Q ,  P Q P   are inconsistent by indirect 

                      method.        
 

       Step Premises Rule Reason 

1 P  P  Added Premises 

2 R Q  P  Given Premises 

3 R S  P  Given Premises 

4 S Q  P  Given Premises 

5 P Q  P  Given Premises 

6 Q P   T  (5) Contra positive 

7 R S   T  (3) Implication 
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8 R Q   T  (4), (7) Hypothetical Syllogism 

9 R P   T  (6), (8) Hypothetical Syllogism 

10 P R  T  (9) Contra positive 

11 R  T  (1), (10)  Modus ponens 

12 Q  T  (1), (5) Modus ponens 

13 R  T  (2), (12) Modus Tollens 

14 F  T  (11), (13) Implication 

 
 
Example:   Using derivation process prove that  S Q ,  R S ,  R ,  R Q  P  . 

 

       Step Premises Rule Reason 

1 S Q  P  Given Premises 

2 R S  P  Given Premises 

3 R S   T  (2) Equivalent 

4 R Q   T  (3), (1) Hypothetical Syllogism 

5 R  P  Given Premises 

6 Q  T  (5), (4)  Modus ponens 

7 R Q   P  Given Premises 

8 R Q   T  (7) Equivalent 

9 Q R   T  (8) Equivalent 

10 R  T  (6), (9) Modus Ponens 

11 R R F   T  (5), (10)  Conjunction 

12 P  T  (11) Contradiction   Any 
formula 

 
 
Example:   Prove that A D   is a conclusion from the premises A B C  , B A  and D C  by 
                       using conditional proof. 
 
  Include A  as an additional premise and derive D . 
 

       Step Premises Rule Reason 

1 A  P  Additional Premises 

2 A B C   P  Given Premises 

3 B C  T  (1), (2) Modus Ponens 

4 B C   T  (3) Equivalence 

5 B A  P  Given Premises 

6 A B  T  (5) Contra positive 

7 A C  T  (6), (4) Hypothetical Syllogism 

8 D C  P  Given Premises 

9 D C   T  (8) Equivalence 

10 D  T  (9) Addition 

11 A D  CP (1), (10) 

 
 

Example:   Using conditional proof, prove that  P Q  , Q R  ,  R S P S  . 
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  Include P  as an additional premise and derive S . 
 

       Step Premises Rule Reason 

1 P   P  Additional Premises 

2 P Q   P  Given Premises 

3 P Q  T  (2) Equivalent 

4 Q  T  (1), (3) Modus Ponens 

5 Q R   P  Given Premises 

6 Q R  T  (5) Equivalent 

7 R  T  (4), (6) Modus Ponens 

8 R S  P  Given Premises 

9 S  T  (7), (8) Modus Ponens 

10 P S  CP  (1), (9)  

 
 
Validity of Arguments 
 
Often we come across arguments expressed in sentences.  The premises can be represented in symbols 
and can be verified the validity of the arguments.  An argument is valid if and only if the conjunction of 
premises implies the conclusion.   
 
Method to test validity 
 

 Construct truth table showing the truth values of premises and conclusion 
 Find rows in which all premises and conclusion is true.  Then the argument is valid. 
 If at least one row contains T for premises and conclusion is F , then the argument is invalid. 

 
Example:  If  7  is a prime number, then 7 does not divide 35.  7 divides 35.  7 is not a prime number. 
 

  Let  P  :  7 is a prime number  Q  :  7 divides 35 :C P : 7 is not prime 

  The premises are P Q ,  Q  and the conclusion is P  

 
Let us now construct truth table: 
 

P  Q  Q  P Q  P  

T  

T  

F  

F  

T  

F  

T  

F  

F  

T  

F  

T  

F  

T  

T  

T  

F  

F  

T  

T  

 

 P Q  and  Q  are both true only in the 

third row and in that row P  is also true.  Hence 
P Q , Q   P  

 

     By using rules of Implications. 
 

     1          P Q      Rule P 

     2          Q                       Rule P     

     3         P                      Rule T(1) (2) 
                                             Modus Tollens             

   
Example:  By using truth tables verify whether the following specifications are consistent: 
Whenever the system software is being upgraded users cannot access the file system.  If users can access 
the file system, then they can save new files.  If users cannot save new files then the system software is 
not being upgraded. 
 
      Let   P   :  The system software is upgraded   
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Q  :  Users can access the system  

R   :  Users can save the new files   
 

 The given premises are :  P Q ,   Q R ,   R P   

 We have to prove the statement  S P Q    Q R   R P   is consistent. 

 

P  Q  R  P  Q  R  
P  Q  

(1) 

Q R  

(2) 

R  P  
(3) 

(1) (2) (3)   

T  T  T  F  F  F  F  T  T  F  

T  T  F  F  F  T  F  F  F  F  

T  F  T  F  T  F  T  T  T  T  

T  F  F  F  T  T  T  T  F  F  

F  T  T  T  F  F  T  T  T  T  

F  T  F  T  F  T  T  F  T  F  

F  F  T  T  T  F  T  T  T  T  

F  F  F  T  T  T  T   T   T  T  

 
 Therefore the premises are consistent. 
 
Example:   Test the validity of the following argument:  If I study, I will pass in the examination.   
                       If  I  watch TV, then I will not study.  I failed in the exam.  Therefore I watched TV. 
 
    Let  P  :  I will pass in the examination  S  :  I will study W : I watch TV   
 
  The given premises are :  S P ,   W S ,   P ,  :C W  

W  S  P  P  S  S  P  W S  

T  T  T  F  F  T  F  

T  T  F  T  F  F  F  

T  F  T  F  T  T  T  

T  F  F  T  T  T  T  

F  T  T  F  F  T  T  

F  T  F  T  F  F  T  

F  F  T  F  T  T  T  

F  F  F  T  T  T   T  

 
 In the last row, premises are True but the conclusion is false.  Hence the arguments are not valid.  
 
 1 PS   Rule P 
 2 P   Rule P 
 3 S   Rule T  (1), (2) 
 4 W S  Rule P 

 5 W  Rule T  (3), (4)  
 
 Therefore the given arguments are not valid. 
 
Example:   Test the validity of the arguments:  If 5 is a prime number, then 5 does not divide 15.   
                      5 divides 15.  Conclusion:  5 is not a prime number. 
 
 P :  5 is a prime number   Q :  5 divides 15   
 
 The given premises are :  P:C&Q,QP   

 
 1 Q  Rule P 
 2 PQ Rule P 
 3 QP  Rule T  (2) 
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 4 P  Rule T  (1), (3) 
  
 Therefore the given arguments are not valid. 
 

Example:  Prove that whenever ,A B C   we also have  A B C   and vice versa.  

Assume that A B C   
To prove  A B C   

Suppose that A  is true and  B C  is false. 

Hence B  must be true and C  must be false. 
Thus A B  is true where as C  is false. 
This contradicts our assumption. 

Conversely assume that  A B C   

To prove A B C  .  Suppose that it is false. 
Hence A B  is true and C  is false.  
Hence A  is true and B C  is false. 
This contradicts our assumption. 

 
 

Example:  Prove that  2  is irrational by giving a proof by contradiction. 
 

     Suppose  2  is rational. 

 Therefore 2
P

Q
  where ,P Q  are integers having no common divisor and 0Q  …… (1)  

  

2

2

2 2

. . 4

2 .......(2)

P
i e

Q

P Q





 

 

  
2P   Even Number 

 
 . .i e  P   Even Number 
 Let  P m  for some integer m . 
 

 From (2) ,  2 2(2 ) 2m Q  

                             2 22Q m  

       2Q   Even Number 

       Q   Even Number 

 

 Since P  and Q  are even number, they have common factor 2. 

 This is a contradiction to (1) .  Therefore  2  is irrational. 

 
 

Example:  Show that 3 2  is irrational number. 
 

Suppose 3 2 R   is a rational number.  Then  2 3 R  . 

Since 3, R are rational,  3 R  is rational and hence 2  is rational.  This is a contradiction to the fact that  

2  irrational.  Therefore 3 2 R   is irrational. 
 
 
Example:   Show that the following premises are inconsistent. “If Ram misses many classes through 

illness then he fails high school. If Ram fails high school then he is uneducated. If Ram reads a   
lot of books then he is not uneducated. Ram misses many classes through illness and reads a  
lot of books.   

 

     Let  P  :  Ram misses many classes  Q :  Ram fails high school 

                      R  :  Ram reads lot of books  S :  Ram is uneducated 
 

     Premises are , , ,P Q Q S R S P R     

 

       Step Premises Rule Reason 
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1 P Q  P  Given Premises 

2 Q S  P  Given Premises 

3 P S  T  (1), (2) Hypothetical Syllogism 

4 R S  P  Given Premises 

5 S R  T  (4) Contra Positive 

6 P R  T  (3), (5) Hypothetical Syllogism 

7 P R   T  (6) Implication 

8  P R   T  (7) Implication 

9 P R  P  Given Premises 

10  P R   P R   T  (8), (9)  

11 F  T  (10) Implication 

 
      
Example:  Show that “It is rained” is a conclusion obtained from the statements.  “If it does not rain or if 
there is no traffic dislocation, then the sports day will be held and the cultural will go on”.  “If the sports 
day is held, the trophy will be awarded” and “the trophy was not awarded.” 

Let  P  :  It rained  Q :  There is a traffic dislocation 

         R  :  Sports day held  S :  Cultural programmes goes on  T :  The trophy is awarded 
 
     Premises are    , ,P Q R S R T T        and  conclusion :C P  

 

       Step Premises Rule Reason 

1 T  P  Given Premises 

2 R T  P  Given Premises 

3 R  T  (1), (2) Modus Tollens 

4    P Q R S     P  Given Premises 

5    R S P Q      T  (4) Contra Positive 

6    R S P Q     T  (3), (5) Hypothetical Syllogism 

7 R S   T  (3) Addition 

8 P Q  T  (6), (7) Modus Ponens 

9 P  T  (8)  Simplification 

 
 

Example:   Prove that the statements P Q R S    and P Q R S   are equivalent. 

 
     P Q R S P Q R S         is a tautology 

                                                           P Q R S       is a tautology 

                                                           P Q R S     

 

Example:  If the premises ,P Q  and R are inconsistent, prove that R   is a conclusion from P  and Q .  

 

 Given that P Q R F   .  We have to prove P Q R   

 Assume that P Q  is true and on the contrary R  is false. 

              Therefore R  is true and hence P Q R   is true, which is a contradiction. 

 Therefore R  is true and hence P Q R  . 
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Predicates: 
 

Consider the statements of the form 
25 0, 2 1 0, 100 .x x x x etc        We can not conclude that these 

are true or false as the values of x  are not known.  If x  is replaced by a real number, the above statements 
becomes propositions.  Such statements are called predicates and the symbol x  is called the variable. 
 
Let us consider two statements:  1.  Ramu is clever      2.  Seetha is clever  
 
It requires 2 different symbols to denote them.  But it will not reveal the common features of these 
statements (clever).  Now we introduce a common symbol to denote ‘is clever’ and a method to join it 
with names of individuals.  The part ‘is clever’ is called ‘predicate’.  Predicate is denoted by capital letters 
and individual person is denoted by small letter. 
 
Here the predicate ‘is clever’ is denoted by C  and Ramu by r  and Seetha by s .  Now the given statements 
can be symbolized as ( )C r  and ( )C s .  The predicate ( )C x  is a statement only if x  is assigned some 

names. 
 
When a quantifier is used on a variable x ? when we have to assign a value to this variable to get a 
proposition, the occurrence of the variable is said to be bound. 
 
An occurrence of a variable that is not bound by a quantifier or that set is equal to a particular value is 
said to be free. 
 
Statement Function and Variables 
 
A simple statement function of one variable consisting of predicate symbol and an individual variable.  
Example:  ( ):M x x is a man.     ( ):R x x  is a rational number greater than 10. 

 
We can also combine one or more statement function using logical connectives to form compound 
function. 
 
Example:  ( ):M x x  is a man,  ( ):H x x  is mortal  and  ( ):T x x  is tall.   

Then ( ) ( )M x H x ,   ( ) ( )M x H x , ( )T x  etc.   

 
Example:  ( , )S x y  :  x  is greater than y . 

 
Quantifiers: 
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Consider the following propositions involving a specified number of objects.   
 
1.   Some men are human    2.  For every real number x , 2 0x    3.  At least one student is interested in 
logic  4.  There exists a function whose integration is  xe .  
 
The word of type “For every”, “For at least”, “There exists an”, “Some” etc., are said to quantify the 
propositions. 
 
Universal Quantifier 
 
The expression for all, some, none, exists, at least one is called the Universal quantifier and is denoted by 

 .    All men are mortal is denoted by   ( ) ( )x M x H x  . 

 
Existential Quantifier 
 
The expression ‘for some’, ‘there exists’  is called existential quantified and is denoted by .  Some men 

are tall is denoted by    ( ) ( )x M x T x  . 

 
 
 
 
 
Connectives involving quantifiers 
 
The predicate prefixed by a quantifier is called a quantified predicate.  The connectives like negation, 
disjunction, conjunction, conditional and biconditional can be used in quantified predicates to form a new 
predicates. 
 

Examples:     ( ) ( )x P x x Q x   ,      ( ) ( )x P x x Q x   ,     ( ) ( )x P x x Q x    

 
Negation of a quantified statement 
 
The following rules are used to find the negation of a quantified predicates. 
 

       . ( ) ( ) . ( ) ( )i x P x x P x ii x P x x P x           

 
Symbolic form of the quantified statements:  
 
1.  Some men are honest 

( ):M x x  is a man           ( ):H x x  is honest  

There exists a man who is honest     ( ) ( )x M x H x   

 
2.  No cats has a tail 

( ):C x x  is a cat           ( ):T x x  has a tail 

For all x , if x  is a cat then x  has no tail.     ( ) ( )x C x T x    

 
3.  Someone is teasing 

( ):T x x  is teasing          ( ):P x x   x is person  

There is one x  such that x  is a person and x  is teasing    ( ) ( )x P x T x    

 
 
4.  All babies are innocent 

( ):B x x  is a baby           ( ):I x x  is innocent 
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For all x , if x  is a baby then x  is innocent.     ( ) ( )x B x I x   

 
5.  Some people who trust others are rewarded 

( ):P x x  is a person           ( ):T x x  trust others             ( ):R x x  is rewarded 

There is some x  such that x  is a person, x  trust others and x  is rewarded     ( ) ( ) ( )x P x T x R x    

 
 
6.  If any one is good, then John is good 

( ):P x x  is a person           ( ):G x x  is good             ( ):G j John is good 

If there is one x  such that x  is a person and x  is good, then John is good     ( ) ( ) ( )x P x G x G j    

 
 
7.  He is ambitious or no one is ambitious 

( ):A x x  is ambitious           ( ):P x x  is person   

x  is ambitious or for all x , if x  is a person then x  is not ambitious   ( ) ( ) ( )A x x P x A x    

 
 
8.  It is not true that all roads leads to Rome. 

( ):R x x  is a road         ( ):L x x  leads to Rome 

Negation of all roads leads to Rome    ( ) ( )x R x L x       

 

9. Express the statement “For every x  there exists a y  such that 2 2 100x y  ” in symbolic form. 

  2 2( )( ) 100x y x y     

 
10. Write the statement “Every one who likes fun will enjoy each of these plays” in symbolic form. 

( ):L x x  likes fun           ( ):P x x  is a play  ( , ):E x y x  will enjoy y  

There exists a man who is honest      ( ) ( ) ( , )x y L x P y E x y     

 
11. Write the statement “Every one who is healthy can do all kinds of work” in symbolic form. 

( ):H x x  is healthy           ( ):W x x  is a kind of work  ( , ):D x y x  can do y  

Symbolic form      ( ) ( ) ( , )x y H x W y D x y     

 
12. Let ( ):M x x is a mammal.  Let ( ):A x x is an animal.  Let ( ):W x x is warm blooded 

               Symbolize the statement: 

               “Every Mammal is warm blooded” 

                  ( ) ( ) ( )x M x W x   

Translate into a statement 

 ( ) ( ) ( )x A x M x   

There are some animals that are not mammals 

  
Universe of discourse: 
 
We can restrict our discussion to a particular set of objects or persons.  Such a restricted class is called 
the universe discourse. 
 
Example:  Symbolize the following statements using and without using universe of discourse.  
 

(a) All men are mortal (b) some men mortal 
 
Without universe of discourse    With universe of discourse 
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( ):M x x  is a man      Let S  be the set of all human beings   

( ):H x x  is mortal      ( ):H x x  is mortal 

 
(a)  Given ‘for all x , if x  is a man then x  is mortal’   
 

  ( ) ( )x M x H x         ( )x H x  

 
(b)  Given ‘There exists some x  such that x  is a man and x  is mortal’  
 

  ( ) ( )x M x H x          ( )x H x  

 
Example:  Translate the following where the universe is the set of all people and 

( ):C x x  is a comedian         ( ):F x x  is funny 

 

  ( ) ( )x C x F x    =  All comedians are funny 

 

  ( ) ( )x C x F x    =  All are comedians and funny 

 

  ( ) ( )x C x F x    =  Some comedians are funny 

 

  ( ) ( )x C x F x    =  Some are comedians and funny 

Example:  ( , ) :R x y x y y x   .  What is the truth value of the quantifier     ( , )x y R x y  , where the 

Domain is the set of real numbers. 
 
The condition x y y x    for all real numbers.  Therefore the truth value is T . 

 
Example:    Let ( )P x  denotes the statement 3x  .  What is the truth value of (2)P ? 

 
 Here (2): 2 3P  .  It is False. 

 
Example:  Let ( , )Q x y  denote the statement 3x y  .  What is the truth value of the proposition (3,0)Q ? 

 
  Given ( , ) : 3Q x y x y   

  (3,0) : 3 0 3Q   .  It is True. 

 
Example:     For all x , there exists some y  such that  0x y  . 

            If  2, 2, 0x y x y     .  Hence the truth value is T . 

 

Example:  Let the universe of discourse be {5,6,7}E  .  Let {5,6}A   and {6,7}B  .   

Let ( ) :P x x  is in A ;  ( ) :Q x x  is in B  and ( , ) : 12R x y x y  .  Find the truth value of 

  ( ) ( ) (5,6)x P x Q x R   . 

 
(5,6) :5 6 11 12R     is true. 

(5)P  is true and (5)Q  is false.  Therefore (5) (5)P Q  is true. 

(6)P  is true and (6)Q  is true.  Therefore (6) (6)P Q  is true. 

(7)P  is false and (7)Q  is true.  Therefore (7) (7)P Q  is true. 

  ( ) ( )x P x Q x    is true. 

  ( ) ( ) (5,6)x P x Q x R      is true. 
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Example:  Find the truth value of  ( ) ( ) ( ) ( )x P Q x x R x    where : 2 1, ( ) : 3, ( ) : 4,P Q x x R x x    with 

the universe of discourse E  being {2,3,4}E  . 

 

P  is true and (4)Q  is false.  Hence (4)P Q  is false.   ( ) ( )x P Q x   is false. 

Since (2), (3), (4)R R R  are all false ( ) ( )x R x  is also false. 

Hence  ( ) ( ) ( ) ( )x P Q x x R x    is false. 

 

Example:  Give an example in which   ( ) ( )x P x Q x    is true but      ( ) ( )x P x x Q x     is false. 

 

Let the universe of discourse be {3, 4,6}E   

Let ( ) : 5P x x  ;   ( ) : 7Q x x  . 

(3)P  is true.  ( ) ( )x P x  is true.  For any x  in E , ( )Q x  is false. 

Hence      ( ) ( )x P x x Q x     is false. 

(6)P  is false and (6)Q  is false.  Therefore (6) (6)P Q  is true. 

Therefore   ( ) ( )x P x Q x   is true. 

 

Demorgan’s Law:     ( ) ( )x P x x P x       and     ( ) ( )x P x x P x       

 
Negation of Quantified Statements 
 
Example:  Negate the following statements: 

a. All cities in India are clean  b.   Some men are honest 
c.   Some birds cannot fly   c.   No dog is intelligent  

 
a.   For all x , x  is a city in India, then x  is clean.   

 ( ):C x x  is a city and ( ):L x x  is clean then    ( ) ( )x C x L x    

 

        ( ) ( ) ( ) ( )x C x L x x C x L x          

     ( ) ( )x C x L x      

                                                           ( ) ( )x C x L x          i.e. some cities in India are not clean  

 
b.   There exists some x , x  is a man, and x  is honest.   

 ( ):M x x  is a man and ( ):H x x  is honest then    ( ) ( )x M x H x    

 

        ( ) ( ) ( ) ( )x M x H x x M x H x        

                                                               ( ) ( )x M x H x     

                                                               ( ) ( )x M x H x     i.e. All men are not honest. 

 
c.   There exists some x , x  is a bird, and x  cannot fly.   

 ( ):B x x  is a bird and ( ):F x x  can fly    then   ( ) ( )x B x F x    

 

       ( ) ( ) ( ) ( )x B x F x x B x F x        

                                                    ( ) ( )x B x F x     
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                                                    ( ) ( )x B x F x      i.e.  All birds can fly. 

 
d.   It is not true that, for all x , x  is a dog, then x  is intelligent.   

 ( ):D x x  is a dog and ( ):I x x  is intelligent   then   ( ) ( )x D x I x     

 

      ( ) ( ) ( ) ( )x D x I x x D x I x         i.e. all dogs are intelligent 

 
Example:   Express the negations of the following statement using quantifiers and in statement form.  

“No one has done every problem in the exercise”. 
 

 ( , ) :D x y x  has done problem y . 

 Given statement is ( )( ) ( , )x y D x y   

 Negation of the statement:  Someone has done every problem in the exercise. 

 Symbolic form:  ( )( ) ( , )x y D x y   

 
Example:  Symbolize the following statement with and without using the set of positive integers as the 

universe of discourse.  “Give any positive integer, there is a greater positive integers”. 
   

Let UOD is the set of integers. 
Let the variables x  and y be in the set of 

integers. 
 

Let ( , ) :G x y x  is greater than y . 

Symbolic form:  ( )( ) ( , )x x G x y   

Suppose we do not impose the restriction on 
UOD 
Let ( ):P x x is positive integer 

 
Symbolic form:  

  ( ) ( ) ( ) ( ) ( , )x P x y P y G x y     

 
 

Example:  Use quantifiers to say that 5  is not a rational number. 

 

 Let ( ):P x x  is a prime number. Let ( ):Q x x  is square root of prime number 

 
 Let ( ):R x Rational number for all x . 

 

 ( ) ( )Q x R x  i.e. Square root of every prime number is not rational.   

 
 
Theory of inference for predicate calculus: 
 
The following equivalence formulas can be used to derive the conclusion. 
 

  ( ) ( )x A x A y     Rule US     ( ) ( )A y x A x   Rule UG  

 

  ( ) ( )x A x A y    Rule ES     ( ) ( )A y x A x    Rule EG  

 
Example:  Verify the validity of the inference:  If one person is more successful than other, then he has 
worked harder to deserve success.  John has not worked harder than Peter.  Therefore, John is not 
successful than Peter. 
 
Solution:   Universe :  All persons 

  ( , ) :S x y x  is more successful than y  

  ( , ) :W x y x  has worked harder than y  to deserve success 

  :a  John  and  :b  Peter 

 The premises are    ( , ) ( , ) , ( , )x y S x y W x y W a b     and conclusion : ( , )C S a b  
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 1 ( , )W a b     Premise 

 2    ( , ) ( , )x y S x y W x y    Premise 

 3   ( , ) ( , )y S a y W a y    US and (2) 

 4  ( , ) ( , )S a b W a b    US and (3) 

 5 ( , )S a b     From (1) & (4) 

 
Example:  Show that the premises “One student in this class knows how to write programmes in JAVA 
and everyone who  knows how to write programmes in JAVA can get a high paying job” imply the 
conclusion “Someone in this class can get a high paying job”. 
 
Solution:   Universe :  All students 

  ( ) :C x x  is in this class 

  ( ) :J x x  knows JAVA programming 

  ( ) :H x x  can get a high paying job 

 The premises are      ( ) ( ) , ( ) ( )x C x J x x J x H x     and conclusion   : ( ) ( )C x C x H x   

 
 

 1   ( ) ( )x C x J x     Premise 

 2 ( ) ( )C a J a     ES and (1) 

 3 ( )C a      From (2) 

 4 ( )J a      From (2) 

 5   ( ) ( )x J x H x     Premise 

 6 ( ) ( )J a H a     US and (5) 

 7 ( )H a      From (4) and (6) 

 8 ( ) ( )C a H a     From (3) and (7) 

 9   ( ) ( )x C x H x     EG and (8) 

 
Example:  Verify the validity of the argument:  Lions are dangerous animals.  There are lions.  Therefore 
there are dangerous animals. 
 
Let  ( ):L x x  is a lion  and ( ):D x x  is a dangerous animal.  

Then the premises are   ( ) ( )x L x D x  and  ( ) ( )x L x and the conclusion is ( ) ( )x D x    

 
 
 Step   Premises     Rule 
 

 1     ( ) ( )x L x D x     P  

 2   ( ) ( )L y D y      T , US , (1) 

 3   ( ) ( )x L x      P  

 4   ( )L y       T , ES , (3) 

 5   ( )D y       T , (2), (4) 
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 6   ( ) ( )x D x      T , EG , (5)  

 
 
Example:  Verify the validity of the argument: All men are mortal.  Socretes is a man  Therefore Socretes 
is a mortal. 
 
Let  ( ):M x x is a man and ( ):R x x  is a mortal. s : Socretes.  Then the premises are 

 

  ( ) ( )x M x R x , ( )M s  and the conclusion is  ( )R s . 

1   ( ) ( )x M x R x  Rule P  

2 ( ) ( )M s R s   Rule US , (1) 

3 ( )M s    Rule P  

4 ( )R s    Rule T  (2), (3) 

 
Hence the given argument is valid. 
 

Example:  Show that ( ) ( ) ( ) ( )x P x x P x    is logically valid statement. 

 

If ( ) ( )x P x  is true in some particular universe, then the universe has at least one object a  in it and ( )P b   

is true statement for every b  in the universe.  In particular ( )P a  must be true.  Then ( ) ( )x P x  is true. 

Therefore ( ) ( ) ( ) ( )x P x x P x    is valid. 

 
 

Example:  Give an example to show that  ( ) ( ) ( )x A x B x   need not be a conclusion from ( ) ( )x A x  and  

( ) ( )x B x . 

 

Let  ( ):A x x A  and ( ):B x x B .  Let {1}A   and {2}B  .  Since A  and B  are non empty, ( ) ( )x A x  and 

( ) ( )x B x  are both true. But  ( ) ( ) ( )x A x B x   is false since A B   . 

 
Example:  For the following set of premises, explain which rules of inferences are used to obtain 
conclusion from the premises.  “Somebody in this class enjoys whale watching.  Every person who enjoys 
whale watching cares about ocean pollution.  Therefore, there is person in this class who cares about 
ocean pollution”. 
 
Universe of discourse :  Set f students in the class 
Let  ( ):E x x enjoys whale watching ( ):O x x cares about ocean pollution   

Then the premises are  ( ) ( )x E x ,   ( ) ( ) ( )x E x O x   and conclusion is ( ) ( )x O x . 

 

 1 ( ) ( )x E x   Rule P 

 2 ( )E a    ES, (1) 

 3  ( ) ( ) ( )x E x O x   Rule P 

 4 ( ) ( )E a O a   US, (3) 

 5 ( )O a    Rule T, (2), (4) 

 6 ( ) ( )x O x   EG, (5) 

 
 

Example:  Prove that   ( )x M x  follows logically from the premises   ( ) ( )x H x M x  and    ( )x H x . 

 
 1   ( )x H x   Rule P 

 2 ( )H a    ES and (1) 
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 3   ( ) ( )x H x M x  Rule P 

 4 ( ) ( )H a M a  US and (3) 

 5 ( )M a    Rule T, (2), (4) 

 6   ( )x M x   EG and (5) 

 
 
Example:  Prove that    ( ) ( )x A x B x A x B      

 
Suppose that   ( )x A x B   is true and assume that   ( )x A x B   is false. 

Hence ( )A a B  is false for some a . 

Therefore is ( )A a  true and B  is false. 

Since ( )A a  is true   ( )x A x  is true. 

Therefore   ( )x A x B   must be false,  which is contrary to our assumption. 

This proves that   ( )x A x B   is true. 

For the reverse implication suppose that   ( )x A x B   is true and assume that   ( )x A x B   is false. 

Therefore   ( )x A x is true and B  is false. 

Therefore ( )A a  is true for some a . 

Therefore ( )A a B  is false 

Hence   ( )x A x B   is false,  which is contrary to our assumption. 

This proves that   ( )x A x B   is true. 

 
 
 
Example:  Prove that      ( ) ( ) ( ) ( )( ) ( ) ( , ) ( ) ( ) ( , )x H x A x x y H y N x y y A y N x y        

 
Assume that  ( ) ( ) ( )x H x A x  is true and    ( )( ) ( ) ( , ) ( ) ( ) ( , )x y H y N x y y A y N x y      is false. 

Hence for some a  in the universe discourse    ( ) ( ) ( , ) ( ) ( ) ( , )y H y N a y y A y N a y      is false. 

This is again implies that  ( ) ( ) ( , )y H y N a y   is true and  ( ) ( ) ( , )y A y N a y   false. 

i.e.  ( ) ( , )H b N a b  is true for some b ……(1) and  ( ) ( ) ( , )y A y N a y    is true. 

                                                                              i.e.  ( ) ( , )A b N a b    is true. 

                                                                              i.e.  ( ) ( , )A b N a b   is false…….(2) 

From (1), ( )H b  and ( , )N a b  is true and from (2) ( )A b  is false. 

Therefore ( ) ( )H b A b  must be false. 

But this cannot happen since we assumed that  ( ) ( ) ( )x H x A x  is true.  This proves the given statement. 

 

Example:  Show that   ( ) ( ) ( ) ( )x H x M x H s M s     

 

1   ( ) ( )x H x M x  Rule P  

2 ( ) ( )H s M s  Rule US , (1) 

3 ( )H s    Rule P  
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4 ( )M s    Rule T  (2), (3) 

 

Example:  Show that    ( ) ( )x P x Q x     ( ) ( )x Q x R x     ( ) ( )x P x R x  

 

1   ( ) ( )x P x Q x  Rule P  

2 ( ) ( )P y Q y   Rule US , (1) 

3   ( ) ( )x Q x R x  Rule P  

4 ( ) ( )Q y R y   Rule US , (3) 

5 ( ) ( )P y R y   Rule T , (2), (4)  

6   ( ) ( )x P x R x  Rule UG , (5) 

 

Example:  Show that   ( )x M x   follows logically from the premises    ( ) ( )x H x M x   and   ( )x H x  

(or) Is the following conclusion validly derivable from the premises given?  If   ( ) ( )x P x Q x  , 

  ( )y P y  then   ( )z Q z . 

 

1   ( )x H x   Rule P  

2 ( )H y    Rule ES , (1) 

3   ( ) ( )x H x M x  Rule P  

4 ( ) ( )H y M y  Rule US , (3) 

5 ( )M y    Rule T , (2), (4) 

6   ( )x M x   Rule EG  

 

Example:  Prove that   ( ) ( )x P x Q x       ( ) ( )x P x x Q x      

 

1   ( ) ( )x P x Q x    Rule P   

2 ( ) ( )P y Q y   Rule ES , (1) 

3 ( )P y    Rule T, (2) PQP,Q 

4   ( )x P x   Rule EG , (3)   

5 ( )Q y    Rule T , (2) 

6   ( )x Q x   Rule EG , (5) 

7    ( ) ( )x P x x Q x    Rule T , (4), (6) 

 
 

Example:  Use conditional proof to prove that   ( ) ( ) ( ) ( ) ( ) ( )x P x Q x x P x x Q x       

 

We assume ( ) ( )x P x  as an additional premise and derive  ( ) ( )x Q x . 

 1 ( ) ( )x P x    Additional Premise 

 2 ( )P a     US, (1) 

 3   ( ) ( )x P x Q x    Rule P 
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 4 ( ) ( )P a Q a    US, (3) 

 5 ( )Q a     Rule T, (2), (4) 

 6 ( ) ( )x Q x    UG, (5) 

 
 
 

Example:  Prove that    ( ) ( ) ( ) ( ) ( ) ( )x P x x Q x x P x Q x        

Assume that   ( ) ( ) ( )x P x x Q x   is true and  ( ) ( ) ( )x P x Q x  is false. 

                                                                                  i.e.   ( ) ( )P a Q a  is false for some a  in the UOD. 

                                                                        i.e.   ( )P a  must be true and ( )Q a  must be false. 

                 i.e.     ( )x P x  is true and ( ) ( )x Q x  is false. 

                        ( ) ( ) ( )x P x x Q x   is false. 

This proves that the given statement is true. 
 
Alternate Method: 
 

 1   ( ) ( ) ( )x P x x Q x  Rule P 

 2     ( ) ( ) ( )x P x x Q x    Rule T, (1)  

 3   ( ) ( ) ( )x P x x Q x    Rule T, (2) 

 4   ( ) ( )x P x Q x     Rule T, (3) 

 5   ( ) ( )x P x Q x    Rule T, (4) 

 
 
 

Example:  Prove that   ( ) ( )x P x Q x          ( ) ( )x P x x Q x      

 Assume   ( ) ( )x P x Q x   is true. ( ) ( )P a Q a    is true for some a . 

                                                                      ( )P a  is true of ( )Q a  is true. 

                                                                        ( )x P x   or   ( )x Q x  

                                                                           ( ) ( )x P x x Q x     

Conversely assume that      ( ) ( )x P x x Q x    is true. 

       ( )x P x   is true,  or    ( )x Q x  is true 

If   ( )x P x  is true, ( )P a  is true for some a . 

i.e. ( ) ( )P a Q a  is true 

i.e.   ( ) ( )x P x Q x   is true 

If   ( )x Q x  is true, ( )Q a  is true for some a . 

i.e. ( ) ( )P a Q a  is true 

i.e.   ( ) ( )x P x Q x   is true 

 

Example:  Prove that   ( ) ( )x P x Q x         ( ) ( )x P x x Q x      

1   ( ) ( )x P x Q x    Rule P 
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2 ( ) ( )P y Q y    ES, (1) 

3 ( )P y     From (2) 

4 ( )Q y     From (3) 

5 ( )xP x   EG, (3) 

6 ( )xQ x    EG, (4) 

7      ( ) ( )x P x x Q x    From (5), (6) 

 

Example:  Using indirect method of proof, prove that   ( ) ( )x P x Q x     ( ) ( )x P x x Q x   

We assume    ( ) ( )x P x x Q x      as additional premise and arrive at a contradiction 

 Step   Premises    Rule 
 

 1     ( ) ( )x P x x Q x       P , Additional Premise 

 2     ( ) ( )x P x x Q x       T , De Morgan’s Law, (1) 

 3    ( )x P x      T , PQ  P, (2) 

 4    ( )x Q x      T , PQ  Q, (2) 

 5  ( )P y      T , ES , (3) 

 6  ( )Q y     T , US , (4) 

 7  ( ) ( )P y Q y     T , (5), (6) 

 8   ( ) ( )P y Q y     T , De Morgan’s Law, (7) 

 9    ( ) ( )x P x Q x    P  

 10  ( ) ( )P y Q y     T , US , (9) 

 11     ( ) ( ) ( ) ( )P y Q y P y Q y     T , (7), (10) 

 12  F      T , (11) 

Example:  Using indirect method of proof, prove that       ( ) ( ) ( ) ( )x P x Q x y Q y z Q z      

We assume   ( )z Q z    as additional premise and arrive at a contradiction 

 
 Step   Premises    Rule 
 

 1     ( )z Q z      P , Additional Premise  

 

 2     ( )z Q z      T , (1)  

 
 3   ( )Q a     T, US, (2) 

 

 4     ( )y P y     P  

 
 5   ( )P a      T , ES , (4) 

 
 6   ( ) ( )P a Q a     T , (3), (5) 
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 7    ( ) ( )P a Q a      T , (6),  

 

 8     ( ) ( )x P x Q x    P  

 
 9   ( ) ( )P a Q a     T , US , (8) 

 

 10      ( ) ( ) ( ) ( )P a Q a P a Q a    T , (7), (9) 

 
 11   F      T , (10)  
 
 

Example:  Using CP obtain the following implication   ( ) ( )x P x Q x ,   ( ) ( )x R x Q x  

  ( ) ( )x R x P x   

 
In conditional method, we assume ( )R x  as additional premise and we derive ( )P x . 

 
 Step   Premises    Rule 

 1     ( ) ( )x P x Q x    P  

 2   ( ) ( )P y Q y     T , US , (1) 

 3     ( ) ( )x R x Q x    P  

 4   ( ) ( )R y Q y    T, US , (3) 

 5   ( ) ( )x R x     P  

 6   ( )R y      T , (5) 

 7   ( )Q y     T , (4), (6) 

 8   ( )P y      T , (2), (7) 

 9   ( ) ( )x P x     T , (8) 

 

Example :  Prove that    ( ) ( )x P x Q x ,   ( ) ( )x R x Q x    ( ) ( )x R x P x   

 

1    ( ) ( )x P x Q x   Rule P 

2  ( ) ( )P a Q a    US (1) 

3    ( ) ( )x R x Q x   Rule P 

4  ( ) ( )R a Q a   US (3) 

5  ( ) ( )Q a R a   (4) (5)  Contra Positive 

6  ( ) ( )P a R a   Rule T (2), (5) 

7  ( ) ( )R a P a   (6) (7)  

8    ( ) ( )x R x P x   UG (7) 

  
 

Example :  Prove that      ( ) ( ) ( )x P x Q y R x  ,   ( )x P x     ( ) ( )Q y x P x R x    

 

 1      ( ) ( ) ( )x P x Q y R x   Rule P 
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 2    ( ) ( ) ( )P a Q y R a   US, (1) 

 3    ( )x P x    Rule P 

 4  ( )P a     ES, (3) 

 5  ( ) ( )Q y R a    From (4), (2) 

 6  ( )Q y     From (5) 

 7  ( )R a     From (5) 

 8  ( ) ( )P a R a    From (4), (7) 

 9   ( ) ( )x P x R x    EG, (8) 

 10     ( ) ( )Q y x P x R x   From (6), (9)  

 
 

Example :  Show that the conclusion    ( ) ( )x P x Q x   follows from the premises 

     ( ) ( ) ( ) ( )x P x Q x y R y S y     and  ( ) ( ) ( )y R y S y  . 

 
 1  ( ) ( ) ( )y R y S y      Rule P 

 2 ( ) ( )R a S a      ES, (1) 

 3 ( ) ( )R a S a      Rule T, (2) 

 4  ( ) ( ) ( )y R y S y       EG, (3) 

 5  ( ) ( ) ( )y R y S y      Rule T, (4) 

 6      ( ) ( ) ( ) ( )x P x Q x y R y S y      Rule P 

 7   ( ) ( )x P x Q x       Rule T, (5), (6) 

 8    ( ) ( )x P x Q x       Rule T, (7) 

 9 ( ) ( )P x Q x      US, (8)  

 10 ( ) ( )P x Q x      Rule T, (9) 

 11  ( ) ( ) ( )x P x Q x      UG, (10) 

 
 
 
 

EXERCISE 

1. Show that        P Q R Q R P R R         , without using truth table. 

2. Show that         P Q P Q R P Q P R             is a tautology without using 

truth table. 

3. Show that  R P Q   is a valid conclusion from the premises , , ,P Q Q R P M M   . 

4. Show that R S  is logically derived from the premises   ,P Q S R P     and Q . 

5. Show that          P Q P Q R P Q P R             is a tautology by using 

equivalences. 

6. Using indirect method, show that  , , ,R S R Q S Q P Q P      . 
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7. Show that R S  is logically derived from the premises   ,P Q S R P     and Q . 

8. Show that using Rule C.P., , ,P Q Q R R S P S        

9. Show that          P Q P Q R P Q P R             is a tautology by using 

equivalences. 

10. Without constructing the truth tables, obtain the PDNF of     P R Q P    . 

11. Obtain the PCNF of the formula      P R P Q Q P       

12. Find the PDNF form  of       P Q P R Q R       without using truth table. Also find its PCNF 

form.  

13. Obtain the PCNF and PDNF of    P R Q P     by using equivalences. 

14. Find the PCNF  of     P R P Q   .  Also find its PDNF, without using truth table.   

15. Let ( ) :M x x  is a man.   ( ) :R x x  is mortal.  Produce the suitable English statement for the 

following:       (1) ( ) ( ) (2) ( ) ( )x M x R x x M x R x     

16. Show that the following set of premises is inconsistent: 

 If war is near then the army would be mobilized.  If the army has mobilized then the labor costs 
are high.  However the war is near and yet the labor costs are not high. 

17. Verify the validity of the argument.  “Every living thing is a plant or an animal”.  John’s gold fish is 
alive and it is not a plant.  All animals has hearts therefore, John’s gold fish has a heart. 

18. Using CP rule, prove the following argument: 

       ( ) ( ), ( ) ( ) ( ) ( )x P x Q x x R x P x x R x P x       .  

19. Show that      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x P x Q x x Q x R x x P x R x     . 

20. If the universe of discourse consists of all real numbers and if ( )p x  and ( )q x  are given by 

( ) : 0p x x   and ( )q x
2: 0x  , then determine the truth value of    ( ) ( )x p x q x  . 

21. Show that if x  and y  are integers and both xy  and x y  are even, then both x  and y  are even. 

22. Let ( ) :K x x  is a two wheeler, ( ) :L x x  is a scooter,  ( ) :M x x  is manufactured by Bajaj.  Express the 

following using quantifiers. 

 (1)  Every two wheeler is a scooter 

 (2)  There is a two wheeler that is not manufactured by Bajaj 

 (3)  There is a two wheeler manufactured by Bajaj that is not a scooter 

 (4)  Every two wheeler that is a scooter is manufactured by Bajaj. 
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UNIT II −  COMBINATORICS 

 

 

Method of Induction 
 
Introduction: 
 
Mathematical statements which cannot be easily derived by direct methods is sometimes derived by using 
mathematical induction.  It is one of the basic methods of proof of a statement about all natural numbers.  
Consider the example:  What is the formula for the sum of first  n   positive odd integers?.   
 

2

2

2

2

1 1

1 3 4 2

1 3 5 9 3

1 3 5 7 16 4

=

+ = =

+ + = =

+ + + = =

 

 
Now any one can guess the sum of the first  n   positive odd integers is 2.n   But to prove assertion of this 
type,  Mathematical induction is a technique.  The word induction is associated with the inductive, by which 
a conclusion is drawn from a large number of special cases. 
 
Principle of Mathematical Induction: 
 
Let ( )p n  be the proposition involving the integral value of  n . 

(i)  If  (1)p   is true and 

(ii) Under the assumption that ( )p k is true,  

(iii) Then we have to prove ( 1)p k +  is true. 

Then , we conclude that  the statement ( )p n  is true for all n Z + . 

 
Note:  Here (1)p   is called the base step of the statement.  Sometimes (0)p  or (2)p  may be the base 

steps. 
 
Strong form of Principle of Mathematical Induction: 
 
Let ( )p n  be the proposition involving the integral value of  n . 

(i)  Assume that  ( )p n   is true for 1,2,3,......,n k=  

(ii) Under the assumption,  we have to prove ( 1)p k +  is true. 

 
Then , we conclude that  the statement ( )p n  is true for all n Z + . 

 

Example 1:  Prove by mathematical induction that  
( 1)

1 2 3 .... .
2

n n
n

+
+ + + + =  

    Let  
( 1)

( ) : 1 2 3 .... .
2

n n
p n n

+
+ + + + =    
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  Now  1(1 1)
(1) : 1 1.

2
p

+
= =          2(2 1)

(2) : 1 2 3
2

p
+

+ = =   is true. 

Hence assume that ( )p k   is true.  i.e.  ( 1)
( ) : 1 2 3 .... .

2

k k
p k k

+
+ + + + =  

Now we have to prove ( 1)p k +  is true. 

 

  

( 1)
1 2 3 .... ( 1) ( 1)

2

( 1) 2( 1)

2

( 1)( 2)

2

( 1)[( 1) 1]

2

k k
k k k

k k k

k k

k k

+
+ + + + + + = + +

+ + +
=

+ +
=

+ + +
=

 

 
Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

Example 2:  Prove by mathematical induction that  2 2 2 2 ( 1)(2 1)
1 2 3 .... .

6

n n n
n

+ +
+ + + + =  

  

Let  2 2 2 2 ( 1)(2 1)
( ) : 1 2 3 .... .

6

n n n
p n n

+ +
+ + + + =    

 

  Now  2 1(1 1)(2 1)
(1) : 1 1.

6
p

+ +
= =  

  2 2 2(2 1)(4 1) 30
(2) : 1 2 5

6 6
p

+ +
+ = = =   is true 

Hence assume that ( )p k   is true.  i.e.  2 2 2 2 ( 1)(2 1)
( ) : 1 2 3 .... .

6

k k k
p k k

+ +
+ + + + =  

Now we have to prove ( 1)p k +  is true. 

  

2 2 2 2 2 2

2

2

2

( 1)(2 1)
1 2 3 .... ( 1) ( 1)

6

( 1)(2 1) 6( 1)

6

( 1)[(2 ) 6 6]

6

( 1)(2 7 6)

6

( 1)( 2)(2 3)

6

( 1) [( 1) 1) [2( 1) 1]

6

k k k
k k k

k k k k

k k k k

k k k

k k k

k k k

+ +
+ + + + + + = + +

+ + + +
=

+ + + +
=

+ + +
=

+ + +
=

+ + + + +
=
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Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

Example 3:  Prove by mathematical induction that  2 2 2 2 (2 1)(2 1)
1 3 5 .... (2 1) .

3

n n n
n

− +
+ + + + − =  

  

Let  2 2 2 2 (2 1)(2 1)
( ) :1 3 5 .... (2 1) .

3

n n n
p n n

− +
+ + + + − =    

 

  Now  2 1(2 1 1)(2 1 1)
(1) : 1 1.

3
p

− +
= =  

  2 2 2(2 2 1)(2 2 1) 30
(2) : 1 3 10

3 3
p

− +
+ = = =  is true 

Hence assume that ( )p k   is true.  i.e.  2 2 2 2 (2 1)(2 1)
( ) :1 3 5 .... (2 1) .

3

k k k
p k k

− +
+ + + + − =  

Now we have to prove ( 1)p k +  is true. 

  

2 2 2 2 2 2

2

2

(2 1)(2 1)
1 3 5 .... (2 1) (2 1) (2 1)

3

(2 1)(2 1) 3(2 1)

3

(2 1)[ (2 1) 3(2 1)]

3

(2 1)(2 5 3)

3

(2 1)(2 3)( 1)

3

( 1) [2( 1) 1) [2( 1) 1]

3

k k k
k k k

k k k k

k k k k

k k k

k k k

k k k

− +
+ + + + − + + = + +

− + + +
=

+ − + +
=

+ + +
=

+ + +
=

+ + − + +
=

 

 
Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

 
 

Example 4:  Use mathematical induction to prove   
2 2 2

3 3 3 3 ( 1) ( 1)
1 2 3 .... .

2 4

n n n n
n

+ + 
+ + + + = = 

 
 

   Let    

2 2
3 3 3 3 ( 1)

( ) : 1 2 3 .... .
4

n n
p n n

+
+ + + + =  

 

  Now  

2 2
3 1 (1 1)

(1) : 1 1.
4

p
+

= =  

  

2 2
3 3 2 (2 1)

(2) : 1 2 9
4

p
+

+ = =   is true. 
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Hence assume that ( )p k   is true.  i.e.  

2 2
3 3 3 3 ( 1)

( ) : 1 2 3 .... .
4

k k
p k k

+
+ + + + =  

Now we have to prove ( 1)p k +  is true. 

  

2 2
3 3 3 3 3 3

2 2 3

2 2

2 2

2 2

( 1)
1 2 3 .... ( 1) ( 1)

4

( 1) 4( 1)

4

( 1) ( 4 4)

4

( 1) ( 2)

4

( 1) [( 1) 1]

4

k k
k k k

k k k

k k k

k k

k k

+
+ + + + + + = + +

+ + +
=

+ + +
=

+ +
=

+ + +
=

 

Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

 
 
Example 5:  Using mathematical induction, prove that  8 3n n−  is multiple of  5, 0,n n I   . 

  

Let    ( ) : 8 3n np n −  is multiple of 5.  i.e.  8 3 5n n X− =  

 

  Now  
1 1(1) : 8 3 5 5 1p − = =  , multiple of 5. 

  
2 2(2) : 8 3 64 9 55 5 11p − = − = =  , multiple of 5. 

Hence assume that ( )p k   is true.  i.e.  ( ) : 8 3 5 .k kp k X− = …………..(1) 

Now we have to prove ( 1)p k +  is true. 

 

  

1 18 3 8 .8 3 .3

(5 3 ).8 3 .3, (1) 8 5 3

5.8 8.3 3 .3

5.8 3 (8 3)

5[8 3 ], 5

k k k k

k k k k

k k

k

k

X from X

X

X

X multiple of

+ +− = −

= + − = +

= + −

= + −

= +

 

 
Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

 
Example 6:  Prove by mathematical induction that  2 13 4n n++  is divisible by 5, 0,n n I   . 

  

Let    
2 1( ) : 3 4n np n ++  is multiple of 5.  i.e.  

2 13 4 5n n X++ =  

 

  Now  
2(1) (1) 1(1) : 2 4 4 16 20 5 4p ++ = + = =  ,  divisible by 5. 
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2(2) (2) 1(2) : 2 4 16 64 80 5 16p ++ = + = =  , multiple of 5. 

Hence assume that ( )p k   is true.  i.e.  
2 1( ) : 3 4 5 .k kp k X++ = …………..(1) 

Now we have to prove ( 1)p k +  is true. 

 

  

2( 1) ( 1) 1 2 2 1

1 1 2 1

1 1

1

1

3 4 3 .3 4 .4

(5 4 ).9 4 .4, (1) 3 5 4

5.9 9.4 4 .4

5.9 4 (9 4)

5[9 4 ], 5

k k k k

k k k k

k k

k

k

X from X

X

X

X divisible by

+ + + +

+ + +

+ +

+

+

+ = +

= − + = −

= − +

= − −

= −

 

 
Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

 

Example 7:  Prove by mathematical induction that  
1

0

3 1
3

2

nn
r

r

+

=

−
= . 

  

Let    
1

0

3 1
( ): 3

2

nn
r

r

p n
+

=

−
=  

                           

1
0 1 2 3 1

( ): 3 3 3 .... 3
2

n
np n

+ −
+ + + + =  

 

 Now  ,  

0 1
0 3 1

(0): 3 1
2

p
+ −

= = . 

   

1 1
0 1 3 1 8

(1): 3 3 4
2 2

p
+ −

+ = = =   is true. 

Hence assume that ( )p k   is true.  i.e.  

1
0 1 2 3 1

( ): 3 3 3 .... 3
2

k
kp k

+ −
+ + + + =  

Now we have to prove ( 1)p k +  is true. 

 

  

1
0 1 2 1 1

1 1

1

( 1) 1

3 1
3 3 3 .... 3 3 3

2

3 1 2.3

2

3.3 1

2

3 1

2

k
k k k

k k

k

k

+
+ +

+ +

+

+ +

−
+ + + + + = +

− +
=

−
=

−
=

 

 
Therefore  ( 1)p k +  is true and hence ( )p n  is true. 
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Example 8:  Using mathematical induction, prove that  n na b−  is multiple of  ( )a b− , n N  . 

  

Let    ( ) : n np n a b−  is multiple of ( )a b− .  i.e.  ( )n na b a b X− = −  

 

  Now  
1 1(1) : ( ) ( ) 1p a b a b a b− = − = −  , multiple of ( )a b−  . 

  
2 2(2) : ( )( ) ( )p a b a b a b a b X− = − + = −  , multiple of ( )a b− . 

Hence assume that ( )p k   is true.  i.e.  ( ) : ( ) .k kp k a b a b X− = − …………..(1) 

Now we have to prove ( 1)p k +  is true. 

 

  

1 1 . .

( ) . . , (1) ( )

( ). . .

( ). ( )

( )[ ], ( )

k k k k

k k k k

k k

k

k

a b a a b b

a b X b a b b from a a b X b

a b aX a b b b

a b aX b a b

a b aX b multiple of a b

+ +− = −

 = − + − = − + 

= − + −

= − + −

= − + −

 

 
Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

 

Example 9:  Show by mathematical induction that 
3 3 , 4.nn n   

 

Let  
3( ) : 3 , 4np n n n   

 

Now   
3 4(4) : 4 3 . . 64 81p i e  , which is true. 

 

Hence assume that ( )p k   is true.  i.e.  
3( ) : 3 , 4kp k k k  …………….(1) 

 

Now we have to prove ( 1)p k +  is true.  i.e. to prove 
3 1( 1) 3kk ++   

 
3 3 2( 1) 3 3 1k k k k+ = + + +  

 
Also we have 2 2 2 33 4 . 3kk k k k k  =   

 
   23 3kk  ………………….(2) 
   

Adding (1) and (2), we have  3 23 3 3k kk k+  + ………….(3) 
 

Also  43 1 3k +  ………………(4) 
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Adding (3) and (4), we have  3 23 3 1 3 3 3k k kk k k+ + +  + +  
 

    

3

3 1

( 1) 3.3

( 1) 3

k

k

k

k +

+ 

+ 
 

Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

 

Example 10:  Prove by mathematical induction   
1 1 1 1

.... .
1.2 2.3 3.4 .( 1) 1

n

n n n
+ + + + =

+ +
 

  

Let    
1 1 1 1

( ) : .... .
1.2 2.3 3.4 .( 1) 1

n
p n

n n n
+ + + + =

+ +
 

 

  Now  
1 1

(1) :
1.2 1 1

p =
+

 is true. 

  

1 1 2
(2) :

1.2 2.3 2 1

1 1 2

2 6 3

4 2

6 3

p + =
+

+ =

=

 

Hence assume that ( )p k   is true.  i.e.  
1 1 1 1

( ) : .... .
1.2 2.3 3.4 .( 1) 1

k
p k

k k k
+ + + + =

+ +
 

Now we have to prove ( 1)p k +  is true. 

 

  
2

2

1 1 1 1 1 1
( 1) : ....

1.2 2.3 3.4 .( 1) ( 1).( 2) 1 ( 1).( 2)

( 2) 1

( 1).( 2)

2 1

( 1).( 2)

( 1)

( 1).( 2)

( 1)

( 2)

k
p k

k k k k k k k

k k

k k

k k

k k

k

k k

k

k

+ + + + + + = +
+ + + + + +

+ +
=

+ +

+ +
=

+ +

+
=

+ +

+
=

+

 

 
Therefore  ( 1)p k +  is true and hence ( )p n  is true. 

 
Example 11.   Use mathematical induction to show that   1! 2 , 5,6,....nn n+ =  

Let ,....6,52!:)( 1 = + nnnP n
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Here  
152!5:)5( +P  is true 

Assume 
12!:)( + kkkP  is true   …….. (1) 

 
Claim: ( 1)p k +  is true. 

Using (1), We have,  
12!:)( + kkkP   

Multiply both sides by 2, we have 

                                   ,2*2!2 1+ kk  

,2!)1( 2++ kkk            since 2 1k +  for all 5k  

,2!)1( 2++ kk  

( 1)p k +  is true 

Hence, by the principle of mathematical induction,   
!! 2 , 5,6,....nn n+ =  

 

Example 12.  Using induction principle, prove that nn 23 +   is divisible by 3. 
 

Let P(n) :   nn 23 +  is divisible by 3. 
P(1) :  3)1(21 =+  is divisible by 3 

Assume  P(k) :   kk 23 +  is divisible by 3 is true.      ………  (1) 
 
Claim: ( 1)p k +  is true. 

Now, ( 1)p k +  :   )1(2)1( 3 +++ kk  

                                    22133 23 +++++= kkkk  

                                    )1(3)2(3233 2323 ++++=++++= kkkkkkkk  …………(2) 

kk 23 +  is divisible by 3.  )1(3 2 ++ kk  is a multiple of 3 and hence divisible by 3. 

)1(3)2()1( 23 ++++=+ kkkkkP  is divisible by 3. 

( 1)p k +  is true. 

By the principle of mathematical induction, P(n) :   nn 23 +  is divisible by 3. 
 
 

Example 13.   Use mathematical induction to show that  .2,
1

....
3

1

2

1

1

1
++++ nn

n
 

 Let .2,
1

....
3

1

2

1

1

1
:)( ++++ nn

n
nP  

Here  
1 1

(2) : (1.707) 2 (1.414)
1 2

P + =  =   is true. 

Assume  
1 1 1 1

( ) : ....
1 2 3

P k k
k

+ + + +    …… (1)  is true. 
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Claim: ( 1)p k +  is true.  

  
1

11
....

3

1

2

1

1

1
:)1(

+
++++++

kk
kP  

   
1 1 1

1 1

k k
k

k k

+ +
 + =

+ +

( 1) 1

1

k k

k

+ +
=

+
 

   
1

1*

+

+


k

kk
 

   1
1

1
+=

+

+
 k

k

k
 

   1)1( +=+ kkP  

  Therefore, )1( +kP  is true. 

  By the principle of mathematical induction,  .
1

....
3

1

2

1

1

1
n

n
++++  

 

Example 14.  Prove by mathematical induction that 
122 76 ++ + nn

is divisible by 43 for all positive 
integer n.   
 

Let P(n) :  
122 76 ++ + nn

is divisible by 43. 
 

Here P(1) is true  i.e.  
33 76 + is divisible by 43. 

 
Assume that  P(k) is true. 

122 76 ++ + kk
is divisible by 43. 

rkk 4376 122 =+ ++
where r is a positive integer   …….. (1)  

 
Claim:   P(k+1) is true. 

To prove 
323 76 ++ + kk

is divisible by 43. 
Now 

( ) 12122

12122

122

1222323

7*4376*6

7*437*66*6

7*496*6

7*76*676

+++

+++

++

++++

++=

++=

+=

+=+

kkk

kkk

kk

kkkk

         …….  (2) 

122 76 ++ + kk
is divisible by 43 

127*43 +k
  is divisible by 43. 

Since  RHS of equation(2) is a multiple of 43, it is divisible by 43.  
323 76 ++ + kk

is divisible by 43. 
P(k+1) is true. 
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Example 15:  Prove that a positive integers greater than 1 is either a prime number or it can be written 
as product of prime numbers. 
 
Let the statement is true for 2n = , because 2  is a prime number. 
Assume that the statement is true for all numbers less than .n k   i.e. any number less than k  is prime or 
it can be written as product of prime numbers. 
 
Consider the number k .  
Case (i):  Suppose k is prime, the statement is true for .n k=  
 
Case (ii):  Suppose k is composite.  Then we know that any composite number has two factors other than 
1 & k . 

Let ,k a b=   where ,a k b k  . 

Therefore by our assumption a and b  can be expressed as product of primes. 

Therefore 1 2... ra p p p=   and  1 2.... sb q q q=  

But 1 2 1 2... ....r sk ab p p p q q q= = , product of primes. 

 
Example 16:  Prove that the number of subsets of set having n  elements is n2 . 
 
We know that a null set has 02  subsets.  Hence (0)P  is true.  

Now assume that ( )P k  is true.  i.e. any set with k  elements has 2k  subsets. 

 
Let A  be a set with 1k + elements.  Choose an element a A . 
Now any subset that does not contain a   is a subset of  { }A a− . 

Therefore there are 2k  subsets of { }A a− . 

Now any subset X  of { }A a−  can be matched up any subset Y of { } { }A a a A−  = . 

Consequently, there are as many subsets of A  that contain a  as do not. 

Thus there are twice as many subsets of A  as there are subsets of { }A a− . 

i.e. number of subsets of 2A = number of subsets of { }A a− . 

                                                   
1

2 2

2

k

k+

= 

=
 

Hence by induction hypothesis, the number of subsets of set having n  elements is n2 .  
 
Example 17:   Let m  any odd positive integer.  Then prove that there  exists a positive integer n  such 

that m  divides 12 −n . 
 

Let ( )12 1k km m −= +  be the sequence of odd positive integers with 
1 1m = . 

Let  ( ) :P n   12 −n  is divisible by ( )12 1k km m −= −  for some k . 

(1) :P   12 1 1− =  is divisible by 
1 1m = . 

(2) :P   22 1 3− =  is divisible by 
1 1m =  and  ( )2 12 1 3m m= + = . 
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(3) :P   32 1 7− =  is divisible by 
1 1m =  and  ( )3 22 1 7m m= + = . 

Hence assume that ( ) :P k   2 1k −  is divisible by 
1 1m =  and  ( )12 1k km m −= + . 

Therefore 2 1k

km− = . 

To show that ( 1) :P k +  is true. 

 
Consider 12 1 2 2 1k k+ − =  −  
                                2 2 2 2 1k k k=  − + −  

                                ( )2 (2 1) 2 1k k= − + −  

                                 

1

1

2 1

k k

k

k

m m

m

m +

= + +

= +

=

 

 

i.e. ( 1) :P k +   12 1k+ −  is divisible by 
1 1m =  and  ( )12 1k km m −= + . 

Therefore ( ) :P n   2 1n −  is divisible by 
1 1m =  and  km  for some k . 

 
Well Ordering Principle 
 
Every non negative set of integers has a smallest element. 
 
Let us prove this statement by mathematical induction.  A set containing one element (non negative 
integer) has a smallest element, namely the element itself. 
 
Assume that the statement is true for a set containing k  elements.  i.e. a set containing k  elements has a 
smallest element. 
 
Consider a set S  with 1k +  elements. Now remove an element, say ' 'a  from S .  Now the set has k  elements 
and it has a least element, say ' 'b . 
 
The smallest  of ' 'a  and ' 'b  is the smallest element of the set  S .  Therefore any finite set of non negative  
integers has a smallest element. 
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Exercise 
 
 
Use mathematical induction to show that 
 

1  
21 3 5 ....... (2 1)n n+ + + + − =  

2.  
1

1 2 3 2 3 4 3 4 5 ....... ( 1)( 2) ( 1)( 2)( 3)
4

n n n n n n n  +   +   + + + + = + + +  

3. 
1 3 5.....(2 1) 1

2 3 4.........(2 ) 1

n

n n

  −


  +
 for all natural numbers 

4. 
1 1 1

1 ..... 1
2 3 2 2n

n
+ + + +  +   (or) If nH  denote harmonic numbers, then prove that 

2
12

n
H n +  using 

mathematical induction. 

5. Using mathematical induction, show that 
2

13
3

1

0

−
=

+

=


nn

r

r . 

6. 3 7 2n n+ −  is divisible by 8 for 1n  . 

7. 11! 2 2! 3 3! ..... ! ( 1)! 1n n n+ + + + = + − if  1n   

8. Show that 2n

nF   for every positive integer n , where  nF  is a Fibonacci sequence. 

9. Use mathematical induction to prove the inequality nn 2  for all positive integer  n . 

10. Use  mathematical induction to show that ,.......,,n,!n n 3212 1 = +
 

11. Prove, by mathematical induction, that 122 76 ++ + nn  is divisible by 43 for each positive integer n . 
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Basics of counting 
 
Combinatoric is a branch of discrete mathematics dealing with counting problems.  Techniques for 
counting are important in Computer Science, especially in analysis of algorithms.  For example, a computer 
password, normally contains eight strings consisting of alphabets, numerals and special characters.  
Suppose a password should contain minimum one special character, one numeral and one capital letter.  
Then how many such passwords can be generated?.  Now the necessity of counting arises. 
 
Principles of counting 
 
The sum rule:  If two tasks can be done in ,m n ways respectively and if both cannot be done at the same 

time, (mutually exclusive) then there are m n+  ways to do both the works.   
 
Equivalently If there are m  different objects in the one set, n  different objects in the another set and if the 
different sets are disjoint, then the number of ways to select an object from one of the 2 sets is m n+ .   
This can be extended to any number tasks. 
 
Example:  In how many ways a student can choose a project from the topics given as: Cryptography – 20 
titles, Artificial Intelligence – 10 titles, Mobile Apps – 5 titles. 
 
By sum rule, there are 20 10 5 35+ + =  ways to select a project from one of these three lists. 
 
The product rule: A task can be done in two successive steps, first step can be done in m ways and second 
step can be done in n  ways Then the task can be done in m n  ways.  This can be extended to any number 
tasks. 
 
Example:  A password consists of two alphabets followed by three digits.  (i)  How many passwords can 
be generated.  (ii)  If first digit is never zero, then how many passwords can be generated?  (iii)  If no 
letter or digit is repeated, how many passwords can be generated in both the cases? 
 

If alphabets and digits are repeated 
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(i)  There are 26 options for alphabets and 10 
options for digits. 
 
Therefore there are 26 26 10 10 10 6,76,000    =  

passwords can be generated. 
 

(ii)  There are 26 options for alphabets and 10 
options for digits.  Since first letter is nonzero 
digit,  
there are 26 26 9 10 10 6,08,400    =  passwords 

can be generated. 
 

(iii) No alphabets and digits are repeated 

 
Therefore there are 26 25 10 9 8 4,68,000    =  

passwords can be generated. 
 

 
Since first letter is nonzero digit,  
there are 26 25 9 9 8 4,21,200    =  passwords 

can be generated. 
 

 

 
Example:  A password consists of an English alphabet followed by 3 or 4 digits.  Find (i)  the total number 
of passwords created  (ii) number of passwords in which no digit repeats. 

(i)  The number of 4 character passwords is 
26 10 10 10 26,000   =  

 
The number of 5 character passwords is 
26 10 10 10 10 2,60,000    =  

 
Therefore, by sum rule, total number of 
passwords is 26,000 2,60,000 2,86,000+ =  

(ii)  The number of 4 character passwords is 
26 10 9 8 18,720   =  

 
The number of 5 character passwords is 
26 10 9 8 7 1,31,040    =  

 
Therefore, by sum rule, total number of 
passwords is 18,720 1,31,040 1,49,760+ =  

 
 
Permutations and Combinations 

Permutations Combinations 

For 0n r  ,  an r − permutation of an n - distinct 
element set is a linear ordering of r elements of 
the set. 
 
It is denoted by  

( )
!

Pr ( , ) ( 1)( 2)... ( 1)
( )!

n
n P n r n n n n r

n r
= = − − − − =

−
 

Results:  P ( , ) !n n P n n n= = ,   P0 ( ,0) 1n P n= =   

 
Note:  It is about the number of arrangements of 
objects 
 
Ordering of objects matters , ,abc bac cab  are 

different 
 

For 0n r  ,   an unordered selection of r −  
elements from an n  element set is called a 
combination. 
 
It is denoted by  

!
r ( , )

! ( )!

n
nC C n r

r n r
= =

−
 

Results:  ( , ) 1 & ( , ) ( , )nCn C n n C n r C n n r= = = −  

 
Note:  It is about the number of selections of 
objects 
 
Ordering of objects does not matter 

, ,abc bac cab  are same 
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2 permutations of , ,a b c  are :  

, , , , ,ab ba bc cb ac ca  

2 combinations of , ,a b c  are :  , ,ab bc ac  

For example, the set of elements ,a b  and c  has six 

permutations. 3P3 3! 6= = .  They are 
, , , , ,abc acb bac bca cab cba . 

There are 3 ways to fill first place 
                    2 ways to fill the second place 
                    1 way to fill the third place 
By product rule, 3 2 1 3! 6  = =  permutations. 

For example, all the combinations of the set 
{ , , }a b c  of sizes 0, 1, 2, 3 are  

{}, { }, { }, { },

{ , }, { , }, { , }, { , , }

a b c

a b b c c a a b c
 

3 0 1, 3 1 3,

3 2 3, 3 3 1

C C

C C

= =

= =
 

 
Example:  (a)  How many different ways can three of the letters of the word VENUS be chosen and written 
in a row?  (b)  How many different ways can this be done if the first letter must be E? 
 
(a)   Required number of ways is given by the number of 3-permutations of a set of five elements. 

. . 5 3 60i e P =  

 
(b)  Since the E is used in the first position, there are four letters available to fill the remaining two 
positions.  Hence the number of 2-permutations of a set of four elements is 4 2 12P = . 
 
Example:  (a)  In how many of ways can the letters of the word VENUS be arranged?  (b)  How many of 
them begin with V and end with S? How many of them do not begin with V but end with S? 
 
(a)  The word VENUS consists of 5 letters  which can be arranged in 5P5 5! 120= =  ways 
 
(b)  If V occupies first place and S the last place, then there are 3 letters left to be arranged in 3 places.  
This can be done in  3P3 3! 6= =  ways 
 
(b)  If V does not occupy first place but S occupies the last place, then the first place is filled by remaining 
3 letters.  For the second place, again 3 letters are available including V.  The third and fourth place can be 
filled by 2, 1 ways.  Therefore by product rule, required number of arrangements are 3 3 2 1 18   =  
ways 
 
Example:  How many 4 digit numbers less than 10,000 can be made with the digits 1, 1, 2, 3, 4, 5, 6, 9? 
 
The number of 4-digit numbers made with the give 8 digits is 8 4P= .  But these numbers include 0 in the 
1000th place. 
 
Hence the number of 4-digit numbers 8 4 7 3P P= −   

Similarly the number of 3-digit numbers 8 3 7 2P P= −  

The number of 2-digit numbers 8 2 7 1P P= −   

The number of 1-digit numbers 8=   

Hence the required number is given by ( )8 4 7 3P P= − + ( )8 3 7 2P P− ( )8 2 7 1 8P P− +  

  
Permutations with repetition 
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Theorem:  When repetition of n  elements contained in a set is permitted in r − permutations, then the 

number of r − permutations is  rn .  

The results of the discussion is summarized below:  Number of ways to select(arrange) r  objects from n  
items: 

 Selection of distinct objects  or 
Arrangement  

(Ordered outcome) 

Selection of identical objects  or 
Combination 

(Unordered outcome) 

No repetition Prn  rnC  

Repetition allowed rn  ( 1) rn r C+ −  

 
Example :  Consider the word ‘COMPUTER’. 
No. of permutations/arrangements of the letters is 8 8 8!P =  
No. of permutations/arrangements of 5 letters is 8 5 6,720P =  

No. of permutations/arrangements of 10 letter sequence, repetitions are allowed is 108=  
Example :  How many digits between 1 and 10000 contain exactly one 8 and one nine. 
 

Of these 4 digits(first position 1 cannot be changed), 8 and 9 can be filled in ( )4 3  ways.  The remaining 

2 positions can be filled by any of the remaining 8 digits is 28  ways.  Hence the required number of 

( ) 24 3 8   

 
Example :  In how many ways can 2 letters be selected from the set { , , , }a b c d  when repetition is 

allowed, if (i) the order of the letters matters  (ii)  the order does not matter? 
When the order of letters matters 

(repetition is allowed) 
When the order of letters does not matter 

(repetition is allowed) 
The number of possible selections 24 16= =  

They are 

, , ,

, , ,

, , ,

, , ,

aa ab ac ad

ba bb bc bd

ca cb cc cd

da db dc dd

 

The number of possible selections (4 2 1) 2C= + −  

                                                                       5 2 10C= =  

They are

, , ,

, ,

,

aa ab ac ad

bb bc bd

cc cd

dd

 

 
Example :  In how many ways can 2 letters be selected from the set { , , , }a b c d  when repetition is not 

allowed, if (i) the order of the letters matters  (ii)  the order does not matter? 
When the order of letters matters 

(repetition is not allowed) 
When the order of letters does not matter 

(repetition is not allowed) 
The number of possible selections 4 2 12P= =  

They are  

, ,

, ,

, ,

, ,

ab ac ad

ba bc bd

ca cb cd

da db dc

 

The number of possible selections 4 2 6C= =  
                                                                        

They are

, ,

,

ab ac ad

bc bd

cd
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Example :  How many different bit strings are there of length nine?. 
 
Each of the nine bits can be chosen in two ways ( 0 or 1). 
Therefore, by the product rule there are 92 512=  bit strings  
 
Example : How many times is the digit 5 written when listing all numbers from 1 to 100,000? 
 
Numbers from 1 to 100,000It is same as numbers between 0 to 99,999.  Let all numbers between them are  
5-digit sequences (5-digit numbers with leading 0s allowed).  
 
Number of times does a 5 occur in the first position in these 5-digit sequences 410 .  For all five positions 
the 5 digit sequence containing 5  is 45 10 . 
 
Example :  Twelve students want to place order of different ice creams in a parlour, which has six type of 
ice creams.  Find the number of orders that the twelve students can place. 
 
Number of types of ice cream is 6.n =  
 
Each order corresponds to a 12 combination with repetition from a set of 6 objects ( 12)r = . 

 
So the number of orders ( 1) rn r C+ − (6 12 1) 12 17 12 6,188C C= + − = =  

 

Example :  Determine the number of solutions of the equation 1 2 3 4 32x x x x+ + + =  where  0, .ix i    

 

Consider a solution 1 2 3 414, 8, 10, 0x x x x= = = = .  Another set of solution is 

1 2 3 48, 10, 0, 14x x x x= = = = . 

Even though the same integers are taken, they are different set of solutions.  This can be restated as 32 
identical items can be distributed to 4 distinct persons, repetitions allowed. 
 
Hence, the number of solutions (4 32 1) 32C= + −  

                                                                 
35 32

6,545

C=

=
 

 
Result:  Consider the following three equivalent statements: 

The number of integer solutions 

of 1 2 3 4 32x x x x+ + + =  where  

0, .ix i   

The number of selections, with 
repetition, of size r  from a 
collection of size n . 

The number of ways r  identical 
objects can be distributed 
among n  distinct containers. 

 
Example :  In how many ways 10 identical balls be distributed in 6 boxes?. 
 
From the above result, it is equivalent to finding the nonnegative integer solution of the equation 

1 2 6.... 10x x x+ + + = . 
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That number is the number of selections of size 10, with repetition, from a collection of size 6.   
i.e. (6 10 1) 10 3,003C+ − =  ways. 

 

Example :  Determine the number of solutions of the equation 1 2 3 4 32x x x x+ + + =  where  0, .ix i    

 

Given 0, .ix i    i.e.  1, .ix i   

Put 1,i iy x= −   so that 0, .iy i   

Then the given equations becomes 1 2 3 41 1 1 1 32y y y y+ + + + + + + =  

                                                            1 2 3 4 28y y y y+ + + =  

 
Hence, the number of solutions (4 28 1) 28C= + −  

                                                                 
31 28

4,495

C=

=
 

 
 

Example :  Determine the number of solutions of the equation 1 2 3 4 32x x x x+ + + =  where  

1 2 3 4, 6 & , 4.x x x x    

 

Put 1 1 2 2 3 3 4 46, 6, 4, 4,y x y x y x y x= − = − = − = −  then the equation becomes 

1 2 3 46 6 4 4 32y y y y+ + + + + + + =  so that 0, .iy i   

1 2 3 4 12y y y y+ + + =  

 
Hence, the number of solutions (4 12 1) 12C= + −  

                                                                 
15 12

455

C=

=
 

 

Example :  Determine the number of solutions of the equation 1 2 3 4 32x x x x+ + + =  where  

1 2 3 4, , 0 & 0 20.x x x x     

 

First we find the no. of solutions where 1 2 3 4, , 0 & 20x x x x   

Put 1 1 2 2 3 3 4 41, 1, 1, & 21,y x y x y x y x= − = − = − = −  then the equation becomes 

1 2 3 41 1 1 21 32y y y y+ + + + + + + =  so that 0, .iy i   

1 2 3 4 8y y y y+ + + =  

 
Hence, the number of solutions (4 8 1) 8C= + −  

                                                                 
11 8

165

C=

=
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No. of solutions where 1 2 3 4, , 0 & 0 20x x x x   = ( No. of solutions where 1 2 3 4, , , 0x x x x  ) −   

                                                                                                    ( No. of solutions where 1 2 3 4, , 0 & 20x x x x  ) 

                                                                                                       6,545 165= −  

                                                                                                       6,380=  

 

Example :  Determine the number of solutions of the equation 1 2 3 4 12x x x x+ + +   where  

1 2 3 4, , , 0x x x x  .  

Consider the equality form of the given inequality as 1 2 3 4 5 12x x x x x+ + + + =  where 5 1x  . 

Put 5 5 1,y x= −  then the equation becomes 1 2 3 4 5 1 12x x x x y+ + + + + =  so that 1 2 3 4 5, , , , 0x x x x y   

1 2 3 4 5 11x x x x y+ + + + =  

 
Hence, the number of solutions (7 11 1) 11C= + −  

                                                                 

17 11

17 6

12,376

C

C

=

=

=

 

Restricted Cases 
Restricted Permutations Restricted Combinations 

The number of permutations of n  different objects 
taken r  at a time in which k  particular objects do 
not occur is ( )Prn k−  

The number of combinations of n  different 
objects taken r  at a time in which k  particular 
objects are always occur is ( ) (r )n k C k− −  

The number of permutations of n  different 
objects taken r  at a time in which k  particular 
objects are always occur is ( )P(r )n k k rPk− −   

The number of combinations of n  different 
objects taken r  at a time in which k  particular 
objects do not occur is ( ) rn k C−  

 
Example:  In how many ways a team of 10 members be chosen out of a batch of 15 students?  How many 
of them will (a) include a particular student  (b)  exclude a particular student? 
  

Here  15, 10, 1n r k= = =  

(a)  Number of ways of selecting a team of 10 members out of 15 is 15 10C=  
(b)  Number of ways in which a particular player is included is 14 9C=  
(c)  Number of ways in which a particular player is excluded is 14 10C=  
 
Circular Permutation 
 
If the objects are arranged in a circle, we get circular permutation.  Number of circular permutations of  n
objects is ( 1)!n − .  If clockwise and counter clockwise arrangements are considered as same, then the 

number of permutations is 
1

( 1)!
2

n − . 

Example:  If 6 people are seated about a round 
table, how many different circular arrangements 
are possible?  

In the group, 3 are male and 3 are female, then 
how many arrangements do the sexes alternate? 
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Let , , , , ,A B C D E F  be the 6 people.  If one 

permutation is obtained from the other by 
rotation, they are considered as same. 
Therefore required number of circular 
arrangements is (6 1)! 5! 120− = =  

 

Note that rotation does not alter the circular 
arrangement. 
Assume that a female occupies position1.  
Positions 2, 4, 6 must be occupied by 3 male and 
there are 3 3 3! 6P = =  ways. 
Positions 3, 5 must be occupied by the remaining 
female in 2 2 2! 2P = =  ways. 
Therefore total number of such a circular 
arrangements 6 2 12=  =  

OR 
Three male be seated along the round table in 
(3 1)! 2!− =  ways.  Between any two male let a 

female be seated.  Hence all 3 females can be 
seated in 3 intermediate places in 3 3 3!P =  ways. 

 by product rule required number of 
arrangements is  2! 3! 12 =  

Example:  Find the number of ways in which 10 different beads can be arranged to form a chain. 

This is a circular permutation with clockwise and counter clockwise arrangements are considered as 

same.  Therefore required number of arrangements is 
1 9!

(10 1)!
2 2

− = . 

Theorem:  The number of different permutations of n objects which include
1n identical objects of type I, 

2n  identical objects of type II,………. and kn  identical objects of type K is equal to 
1 2

!

! !... !k

n

n n n
 where 

1 2 ... kn n n n+ + + = .  

Example:  Consider 3-permutations of the three alphabets , , .a b c   

 
The 3! permutations are , , , , ,abc acb bac bca cab cba . 

If  ,b c  is replaced by   , then the permutations becomes , , , , ,a a a a a a         which are not 

different. 
Then the number of different permutations of 3 letters in which 2 are identical (type I) and 1 letter is (type 

II) is equal to 
3!

3
2!1!

=


.  They are , ,a a a    . 

 
Example:  How many permutations are there on the word “MALAYALAM”? 
  

Total number of letters 9 in which M occurs 2 times, A occurs 4 times, L occurs 2 times, Y occur 1 

time.  Hence there are 
9!

2! 4! 2!
=

 
  permutations on this word. 
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Example:  How many positive integers can be formed using the digits 3, 4, 4, 5, 5, 6, 7, whose value is 
above 50,00,000.  
 
The first place must be occupied by the digits 5, 6 or 7. 
When 5 becomes the first place, the remaining six places are to filled by the digits 3, 4, 4, 5, 6, 7. 

Therefore required no. of such numbers 6!

2!
=   (digit 4 occurs twice) 

                                                                              360=  
 
When 6 becomes the first place, the remaining six places are to filled by the digits 3, 4, 4, 5, 5, 7. 

Therefore required no. of such numbers 
6!

2! 2!
=


  (digit 4, 5 occurs twice) 

                                                                              180=  
 
When 7 becomes the first place, the remaining six places are to filled by the digits 3, 4, 4, 5, 5, 6. 

Therefore required no. of such numbers 
6!

2! 2!
=


  (digit 4, 5 occurs twice) 

                                                                              180=  
 
Therefore No. of numbers exceeding 50,00,000 = 360 + 180 + 180 = 720 
 
 
Example:  How many bits of string of length 10 contain 
  i.  exactly four 1’s   ii.   at most four 1’s 
 iii. at least four 1’s   iv.  an equal number of 0’s and 1’s 
 

This is permutation with repetition.  Hence number of different permutations are 
1 2

!

! !... !k

n

n n n
. 

 
 (i)  The 10 bit string contains exactly four 1’s and six 0’s 

 Therefore required bit strings 
10!

210
4! 6!

= =


 ways  

 
(iii)  The 10 bit string contains at most four 1’s  
(four 1’s and six 0’s) or (three 1’s and seven 0’s) or (two 1’s and eight 0’s)  or (one 1’s and nine 0’s)  
or  (no 1’s and ten 0’s) 

 Therefore required bit strings 
10! 10! 10! 10! 10!

386
4! 6! 3! 7! 2! 8! 1! 9! 0! 10!

= + + + + =
    

 ways  

 
 (iii)  The 10 bit string contains at least four 1’s  

(four 1’s and six 0’s) or (five 1’s and five 0’s) or (six 1’s and four 0’s)  or (seven 1’s and three 0’s)  
or  (eight 1’s and two 0’s)  or (nine 1’s and one 0’s) or (ten 1’s and no 0’s) 

 Therefore required bit strings 
10! 10! 10! 10! 10! 10! 10!

848
4! 6! 5! 5! 6! 4! 7! 3! 8! 2! 9! 1! 10! 0!

= + + + + + + =
      

 ways  

 
 (iv)  The 10 bit string contains an equal number of 0’s and 1’s (i.e. five 1’s and 0’s)  
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 Therefore required bit strings 10!
252

5! 5!
= =


 ways  

 
Problems on Permutations 
 
Example:  How many permutations can be made out of the letters of the word “Basic”?  How many of  
these  (1)  Begin with B?      (2)  End with C?           (3)  B and C occupy the end places? 
 
 The given string contains 5 letters. 

(1)   Since all permutations 
(words) must begin with B, the 
remaining 4 letters can be 
arranged in 4 4 4!P =  ways.  
Therefore total number of 
permutations with B as the 
starting letter is 4! 24= . 

(2)   Since all permutations 
(words) must end with C, the 
remaining 4 letters can be 
arranged in 4 4 4!P =  ways.  
Therefore total number of 
permutations with C as the end 
letter is 4! 24= . 

(3)   Since all permutations 
(words) must begin with B and 
end with C, the remaining 3 
letters can be arranged in 
3 3 3!P =  ways.  
Therefore total number of 
permutations with B as the 
starting letter is 3! 6= . 

 
 
Example:  If repetitions are not allowed,  
(i)     How many four digit numbers can be formed from the digits 1, 2, 4, 5, 7 and 9? 
(ii)    How many of these numbers are less than 5000? 
(iii)   How many of these numbers are odd?    
(iv)   How many of the numbers contain both the digits 2 and 7?  

(i) Position 1 can be 
filled by 6 numbers 

Position 2 can be 
filled by 5 numbers 

Position 3 can be 
filled by 4 numbers 

Position 4 can be 
filled by 3 numbers 

 

 Therefore number of 4-permutations of 6-numbers = 6 4 6 5 4 3 360P =    =  
 

(ii) Position 1 can be 
filled by three ways 
by the numbers1, 2, 4 

Position 2 can be 
filled by 5 numbers 

Position 3 can be 
filled by 4 numbers 

Position 4 can be 
filled by 3 numbers 

 

 Therefore number of 4-digit numbers less than 5000 = ( )3 5 3 3 5 4 3 180P =    =  
  

  (iii)   The required 4-digit number is odd, the last digit must be 1, 5, 7 and 9. 
 Position 1 can be 

filled by 5 numbers 
Position 2 can be 
filled by 4 numbers 

Position 3 can be 
filled by 3 numbers 

Position 4 can be 
filled by 4 ways by the  
numbers 1, 5, 7, 9 

 

 Therefore number of 4-digit odd numbers ( )5 3 4 5 4 3 4 240P=  =    =  
 

(iv) The digits 2 and 7 can occupy any two of the 4 
places.  Therefore there are 4 2 4 3 12P =  =  
ways 

The remaining two places can be occupied by 
the numbers 1, 4, 5, 9.  Therefore there are 
4 2 4 3 12P =  =  ways 

 

 Therefore number of 4-digit numbers containing 2 and 7 = 4 2 4 2 12 12 144P P =  =  
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Example:  There are 7 boys and 8 girls.  
(i)  In how many ways can all the 7 boys and 8 girls 
sit in a row? 

There are 15 persons(arranged in 15 places) 
Therefore number of ways 15 15 15!P= =  ways 

(ii)  In how many ways can they sit in a row such 
that two boys can’t sit together? 

The 8 girls can be seated in 8 8 8!P =  ways 
There are 8 places for 7 boys  
 The 7 boys can be seated in 8 7P  ways 
Hence required number of  8! 8 7P=   

(ii)  In how many ways can they sit in a row if the 
boys are to sit together? 

Consider boys are one unit and hence there are
1 8 9+ =  persons. 
These 9 persons can be arranged in a row 9! ways. 
In any one of these 9! ways, the 7 boys can be 
arranged among themselves in 7!  ways. 
Hence required number of ways 9! 7!=   

(iii)  In how many ways can they sit in a row if the 
boys are to sit together and the girls are to sit 
together? 

Consider boys are one unit and girls are another 
unit.  These 2 units can be arranged in 2!  ways. 
In any one of these 2!  ways, the 7 boys can be 
arranged among themselves in 7!  ways and the 
girls among themselves in 8! ways.  
Hence required number of ways 2! 8! 7!=    

(iv)  In how many ways can they sit in a row if just 
the boys are to sit together? 

No. of ways in which boys only sit together  
=  (No. of ways in which boys sit together) −  
     (No. of ways in which boys sit together and girls 
     sit together)   

( ) ( )9! 7! 2! 8! 7!=  −    

Example:    A collection of eight books consists of two books on English, three books on Mathematics, and 
three books on Science. 
(a) How many ways can the books be arranged on a shelf so that all books on a single subject are together? 
(b) How many ways can the books be arranged on a shelf so that the three books on Mathematics are 
together? 
(c) How many ways can the books be arranged on a shelf so that the two books on English occur at the right 
end of the arrangement? 
 
(a)    Let consider each subject books are considered together.  Therefore there are 3 bunch of books.  They 
can be arranged in 3 3 3!P =  ways. 
Among themselves, English books can be arranged in 2 2 2!P =  ways. 
Among themselves, Mathematics books can be arranged in 3 3 3!P =  ways. 
Among themselves, Science books can be arranged in 3 3 3!P =  ways. 

Therefore by multiplication rule, total number of arrangements ( )3! 2! 3! 3! 432=    =  

 
(b)  If Mathematics books are considered together, then there are 6 books.  These 6 books can be arranged 
in 6 6 6!P =  ways.   In this arrangements,  Mathematics books among themselves can be arranged in   
3 3 3!P = ways. 

Therefore by multiplication rule, total number of arrangements ( )6! 3! 4,320=  =  
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(c)  If English books are considered together, then there are 6 books.  These 6 books can be arranged in 
6 6 6!P =  ways, in which English books are placed at the right end.   In this arrangements,  English books 
among themselves can be arranged in   2 2 2!P = ways. 

Therefore by multiplication rule, total number of arrangements ( )6! 2! 1,440=  =  

 
Example :   A magnetic tape contains a collection of 5 lakh strings made up of four or fewer number of 

English letters.  Can all the strings in the collection be distinct? 
 
 Total number of strings with four or fewer number of English letters  

                          26 4 26 3 26 2 26 1P P P P+ + + ( ) ( ) ( ) ( )24 23 22 21 24 23 22 24 23 24=    +   +  +  

                                                                               

( ) ( ) ( ) ( )24 23 22 21 24 23 22 24 23 24

2,55,024 12,144 552 24

2,67,704

=    +   +  +

= + + +

=

 

 
There can be only 2,67,704  distinct strings.  Since the magnetic tape contains 5 lakh strings, we 

conclude that the collection of the strings are not distinct.  
 
 
Example :   How many permutations of the letters ABCDEFGH contain the string ABC? 
 
If the letter group ABC is treated as a unit, then there are effectively only six objects 
that are to be arranged in a row.  Therefore there are 6! 720=  permutations. 
 
Problems on Combinations 
 
Example :   In how many ways a committee of 6 persons be formed from 7 men and 5 women so as to 
include 3 women at least? 
 
The committee may consists of  
 
(i) 3 men and 3 women in 7 3 5 3 35 10 350C C =  =  ways  

 
(ii)  2 men and 4 women in 7 2 5 4 21 5 105C C =  =  ways 

 
(iii) 1 man and 5 women in 7 1 5 5 7 1 7C C =  =  ways 

 
By sum rule, the number of possible ways of forming the committee 350 105 7 462= + + =  ways.   

 

Example:  There are 7 men and 8 women.  A committee should be formed with 6 members. 
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How many number of ways a committee can be 
formed with no gender partiality?(they can be of 
any sex) 

15 14 13 12 11 10
15 6 5005

1 2 3 4 5 6
C

    
= =

    
 

How many number of ways a committee with a 
captain, can be formed with no gender partiality? 

A captain can be chosen in 15 ways 

The other 6 members can be chosen from 14 
members  

14 13 12 11 10 9
14 6 3003

1 2 3 4 5 6
C

    
= =

    
 

 total number of ways to select a team with a 
captain is 15 3003 45045 =  

How many number of ways a committee can be 
formed with male members? 

7 6 7 1 7C C= =  

How many number of ways a committee can be 
formed with female members? 

8 7
8 6 8 2 28

1 2
C C


= = =


 

How many number of ways a committee can be 
formed with 4 male and 2 female members? 

7 6 5 4 8 7
7 4 8 2 980

1 2 3 4 1 2
C C

   
 =  =

   
 

How many number of ways a committee can be 
formed with all of them are same sex? 

i.e. all the 6 are either male or female 

8 7
7 6 8 6 7 1 8 2 7 35

1 2
C C C C


+ = + = + =


 

How many number of ways a committee can be 
formed with at least 5 women? 

(5W, 1M)  or (6W, 0M) 

( ) ( ) ( ) ( )7 1 8 5 7 0 8 6 7 40 1 24 304C C C C +  =  +  =  

How many number of ways a committee can be 
formed with at most 2 men? 

(0M, 6W) or (1M, 5W)  or (2M, 4W) 

( ) ( ) ( )

( ) ( ) ( )

7 0 8 6 7 1 8 5 7 2 8 4

1 24 7 56 21 70 1886

C C C C C C +  + 

=  +  +  =
 

 
Example :   Which regular polygon has the same number of diagonals as sides? 
 
A regular polygon with n  sides has n  vertices.  Any two vertices give either a side or a diagonal.  
Therefore the total sides and diagonals will be 2nC .  There are n  sides.   
 
Therefore number of diagonals is 2nC n= −  

               
( )1

2

n n
n

−
= −  

                                                                     
( )3

2

n n −
=  
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But given that 
( )3

2

n n
n

−
=   

                             

( )

2

2

3 2

5 0

5 0

n n n

n n

n n

− =

− =

− =

 

 
Since n  cannot be 0,  we have  5n = .  Thus the pentagon is the only polygon with the same number of diagonals as  
sides. 
 

Example:  How many number of arrangements are there on the word “JAMMAIASSUU”?  How many of 
these arrangements have no adjacent to A’S? 
 

Total number of arrangements of the letters of the given word 
11!

8,31,600
3! 2! 2! 2! 1! 1!

= =
    

 

Total number of arrangements of the letters of the word, omitting  
8!

5,040
2! 2! 2! 1! 1!

A = =
   

 

Consider one of the permutation, omitting A is  *J * M * M * I * S * S * U * U *.   
So, three A’s can be inserted in any of the place nine places i.e. 9 3 84C = ways. 
Therefore by product rule, there are 5,040 84 4,23,360 =  arrangements that have no two A’s are  

adjacent. 
 

Example :    Prove that if n  and k  are positive integers with  2n k= , then 
!

2k

n
 is an integer. 

 Consider the symbols  1 1 2 2 3 3, , , , , ,......, ,k ka a a a a a a a .  Here k  symbols are repeated twice.  Therefore  

2n k= . 

 The number of ways in which all these 2n k=  symbols are arranged 
!

2! 2! 2! ...... 2!( )

n

k times
=

   
 

                                                                                                                                                  
!

2k

n
= , an integer. 

Binomial Theorem 
 

Consider the binomial expansion 
0 1 1 2 2 0( ) 0 1 2 ....n n n n nx y nC x y nC x y nC x y nCnx y− −+ = + + + + .  Here the  

coefficients are called binomial coefficients which are r  combination from the set of n  elements. 

  
6

0

( )
n

n n r

r

x y nCrx y−

=

+ =    and  
6

0

( ) ( 1)
n

n r n r

r

x y nCr x y−

=

− = −  

 

Example:  Find the coefficient of 
5 8x y  in 

13( )x y+ . 

 

 
13 13 0 12 1 11 2 5 8 0 13( ) 13 0 13 1 13 2 .... 13 8 ..... 13 13x y C x y C x y C x y C x y C x y+ = + + + + + +  

 

 Therefore the coefficient of 
5 8x y  is 13 18C . 

 



 

67 

https://doi.org/10.5281/zenodo.15287608 

Example:  Show that if n  and k  are positive integers then ( ) k/
k

n
n

k

n









−
+=







 +

1
1

1
 .  Use this identity to 

construct an inductive definition of the binomial coefficients. 
 
 By definition 

  

( )
( )

( )
( ) ( )

( )
( ) ( )

( )

1 1 !

! 1 !

1 !

1 ! 1 !

1 !

1 ! ( 1) !

1

1

n n

k k n k

n n

k k n k

n n

k k n k

nn

kk

+ + 
= 

+ − 

+ 
=

 − + −

+
=

− − −

+  
=  

− 

  

 

Theorem:  Prove that 
1

1

n n n

r r r

+     
= +     

−     
 

 

 Consider . .
1

n n
R H S

r r

   
= +   

−   
 

                                             
( ) ( ) ( )

! !

1 ! 1 ! ! !

n n

r n r r n r
= +

− − + −
 

                                             
( ) ( )( )

( )
( )( )

! 1!

1 ! 1 ! ! 1 !

n n rr n

r r n r n r r n r n r

− +
= +

 − − + − − + −
 

                    
( )

( )
( )

! 1!

! 1 ! ! 1 !

n n rr n

r n r r n r

− +
= +

 − + − +
 

       
( )
( )

! 1

! 1 !

n r n r

r n r

 + − +
=

− +
 

       
( )
( )

1 !

! 1 !

n

r n r

+
=

+ −
 

                                            

1

. . .

n

r

L H S

+ 
=  
 

=
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EXERCISE 
 
1. How many different words are there in the word MATHEMATICS? 
 
2. How many different words are there in the word MASSASAUGA? 
 
3. How many permutations are there in the word MISSISSIPPI? 
 
4. In how many ways can all the letters in MATHEMATICAL be arranged? 
 
5. A box contains six white balls and five red balls.  Fid the number of ways four balls can be drawn 

from the box if (1) they can be any color  (2) two must be white and two red  (3)  they must all are 
of the same color. 
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6. From a club consisting of six men and seven women, in how many ways we select a committee of 
(1) three men and four women  (2) four person which has at least one women  (3) four person 
that has at most one man  (4) four persons that has children of both sexes? 

 
7. There are 6 men and 5 women in a room.  Find the number of ways four persons can be drawn 

from the room if (1) they can be male or female  (2)  two must be men and two women  (3)  they 
must all are of the same sex. 

 
8.   Suppose there are 9 faculty members in the mathematics department and 11 in the computer 

science department.  How many ways are there to select a committee to develop a discrete 
mathematics course at a school if the committee is to consist of three faculty members from the 
mathematics department and four from the computer science department? 

 
9. From a club consisting of 6 men and 7 women, in how many ways can we select a committee of 4 

persons that has at most one woman? 
 

10. How many solutions does the equation, 1 2 3 11x x x+ + =  have, where 
1 2,x x  and 3x  are non-

negative integers?. 
 

11.   Find the coefficient of 
10 15x y  in 

25( )x y+ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pigeonhole Principle 
 
If n  pigeons are accommodated in m  pigeon-holes and n m  then at least one pigeonhole will contain 
two or more pigeons. 
 
Generalization: If n  pigeons are accommodated in m  pigeon-holes and n m  then at least one of the 

pigeonholes must contain at least 
1

1
n

m

− 
+ 

 
 pigeons. 

 

Note:  If  x  is a real variable, the floor of x , denoted by x    is the greatest integer less than or equal to x . 
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Example:  If seven colors are used to paint 50 bicycles, then show that at least eight bicycles will be the 
same color. 
 

Here 50n =  and 7m= .  By generalized pigeonhole principle, 
50 1

1 8
7

− 
+ = 

 
 bicycles will have the same 

color. 
 

Example:  Among 200 people, how many of them were born on the same month? 

Here 200n =  and 12m = .  By generalized pigeonhole principle, 
200 1

1 17
12

− 
+ = 

 
 peoples were born in 

the same month. 
 
Example:  Prove that in a group of six people, at least three must be mutual friends or at least three must 
be mutual strangers.  
 
Let Ram be one of the 6 people.  Let the remaining 5  peoples be accommodated in two rooms namely, 
‘Friends to Ram’ and ‘Strangers to Ram’. 
Let us treat the 5 people as 5 pigeons and 2 rooms as 2 pigeonholes.  By the generalized pigeonhole 

principle, one of the room must contain 
5 1

1 3
2

− 
+ = 

 
 people. 

 
In the three people, if any two are mutually friends, then together with Ram, there is a set of 3 mutual 
friends.  If no two are mutually friends, then these 3 are mutual strangers. 
 
Example :  Find the minimum number of students in a class to be sure that four out of them are born in 
the same month. 
 
Consider each month as a pigeonhole, then 12.m =  

We have to find  such that 
1

1 4
n

m

− 
+ = 

 
. 

                                                        
1

3
12

n − 
= 

 
 

                                          37n =  
Example: Show that among any group of six (not necessarily consecutive) integers there are two integers 
with the same remainder when divided by 5. 
 
 
 There are only 5 possible reminders when an integer is divided by 5, namely 0, 1, 2, 3, 4. 
 
 By Pigeon hole principle if we have 6 reminders then at least 2 must be same. 
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Example:  A bank requires customers to choose a four-digit code to use with an ATM card. The code must 
consist of two English alphabets in the first two positions and two numerals in the other two positions. The 
bank has 70,000 customers. Show that at least two customers choose the same four-digit code. 
 
By multiplication rule the possibility for number of distinct codes is 
  
                                     =  No. of choices of first alphabet   No. of choices of second alphabet  
                                         No. of choices of first digit   No. of choices of second digit  

                                     
26 26 10 10

67,600

=   

=
 

 
Since there are 75,000 customers and only 67,600 codes, the Pigeon-Hole Principle implies that at least 
two of the customers choose the same code. 
 
Example:  If  n  pigeonholes are occupied by 1kn+  pigeons, where k  is a positive integer, prove that at least 
one pigeonhole is occupied by 1k +  or more pigeons.  Hence find the minimum number of m  integers to be 
selected from  987654321 ,,,,,,,,S =  so that the sum of two of the m   integers are even. 

 
Suppose one pigeonhole is not occupied by 1k +  or more pigeons, then each pigeonhole contains at most  k  

pigeons.  Therefore, the total number of pigeons occupying the n  pigeonholes is at most kn . 
 
But there are 1kn+  pigeons, which is a contradiction.  Therefore, at least one pigeonhole is occupied by 

1k +  or more pigeons. 
 
We know that sum of two even integers or two odd integers is even.  Divide the given set  into two subsets 

as    1,3,5,7,9 , 2,4,6,8o eS S= = .  Let them be pigeonholes.  Therefore 2n = . 

 

Now at least two numbers must be chosen from the set oS  or eS . 

i.e. at least one pigeonhole must contain 2 pigeons.  i.e.  1 2k + =   i.e.  1k = . 

 
Therefore the minimum number of pigeons required (minimum number of integers selected) is 1 3.kn+ =  
 
Example:  How many cards must be selected from a standard deck of 52 cards (4 different suits of equal 
size) to guarantee that at least three cards of the same suit are chosen? 
 
Suppose there are 4 boxes, one for each suit ( 4m=  pigeonholes).  Now cards are selected and placed in 
the respective boxes reserved for that suit.  Suppose n  cards (pigeons) are selected to ensure at least 3 
cards of the same suit.  Then by general pigeonhole principle 

  
1

1 3
n

m

− 
+  

 
 

  
1

1 3
4

n − 
+  
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  1
2

4

n −
  

  9n  , minimum 9 cards must be chosen. 
 
Example:  What is the maximum number of students required in a discrete mathematics class to be sure 
that at least six will receive the same grade if there are five possible grades A, B, C, D and F? 
 
Given that only 5 grades ( 5m =  pigeonholes) are available.   Suppose n  students (pigeons) are required 
to ensure at least 6 will receive the same grade.  Then by general pigeonhole principle 

  
1

1 6
n

m

− 
+  

 
 

  
1

1 6
5

n − 
+  

 
 

   

  
1

5
5

n −
  

  26n , minimum 26 students are required. 
 
Example:  What is the maximum number of students required in a discrete mathematics class to be sure 
that at least six will receive the same grade if there are five possible grades A, B, C, D and F? 
 
Given that only 5 subjects ( 5m =  pigeonholes) are available.   Suppose n  students (pigeons) are required 
to ensure at least 5 students belongs to the same subject.  Then by general pigeonhole principle 

  
1

1 5
n

m

− 
+  

 
 

  
1

1 5
5

n − 
+  

 
 

   

  
1

4
5

n −
  

  21n  , minimum 21 students are required. 
 
 
Principle of Inclusion and Exclusion 
 
When two jobs can be done at the same time we cannot use the sum rule.  Because the addition leads to an 
overcount since the ways to do both jobs are counted twice.  Therefore we add the number of ways to do 
each of the two jobs and then subtract the number of ways to do both jobs.  This technique is known as the 
principle of inclusion – exclusion. 
 

If A  and B  are finite subsets of a finite universal set U , then ( ) ( ) ( ) ( )n A B n A n B n A B = + −   

 
If ,A B  and C  are finite subsets of a finite universal set U, then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n A B C n A n B n C n A B n B C n C A n A B C  = + + −  −  −  +    
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This principle can be extended to any number of finite subsets. 
 
Example:   Find the number of integers between 1 and 500 that are not divisible by any of the integers 2, 
3 and 5. 
 
Let , ,A B C  be the set of integers that lies between 1 and 500 both inclusive and that are divisible by   2, 

3 and 5 respectively. 
 

Therefore 
500

250
2

A
 

= = 
 

, 
500

166
3

B
 

= = 
 

,  
500

100
5

C
 

= = 
 

 

500 500 500
83, 33, 50

2 3 3 5 2 5
A B B C A C

     
 = =  = =  = =            

 

500
16

2 3 5
A B C

 
  = =   

 

 

A B C A B C A B B C C A A B C  = + + −  −  −  +    

                                       

                              ( ) ( ) ( )250 166 100 83 50 33 16 366= + + − + + + =  

Therefore total number of integers not divisible by 2, 3, 5 = 500 – (no. of integers divisible by 2, 3, 5) 
                                                                                                               = 500 – 366 = 134 
 
Example:   Find the number of integers between 1 and 250 both inclusive that are divisible by any of the 
integers 2, 3, 5 and 7. 
 
Let , , ,A B C D  be the set of integers that lies between 1 and 250 both inclusive and that are divisible by   

2, 3, 5, 7 respectively. 
 

Therefore 
250

125
2

A
 

= = 
 

, 
250

83
3

B
 

= = 
 

,  
250

50
5

C
 

= = 
 

,  
250

35
7

D
 

= = 
 

 

250 250 250 250
41, 16, 7, 17

2 3 3 5 5 7 2 7
A B B C C D A D

       
 = =  = =  = =  = =                 

 

250 250 250 250
8, 5, 2, 3

2 3 5 2 3 7 3 5 7 2 5 7
A B C A B D B C D A C D

       
  = =   = =   = =   = =                     

 

 

250
1

2 3 5 7
A B C D

 
   = =    

 

 

A B C D A B C D A B B C C D A D A C B D   = + + + −  −  −  −  −  −   
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                                      A B C A B D B C D A C D A B C D+   +   +   +   −     

 

                              ( ) ( ) ( )125 83 50 35 41 25 17 16 11 7 8 5 3 2 1 193= + + + − + + + + + + + + + − =  

 
Example:   Determine the number of positive integers n , 1 1000n   that are divisible by 5, but not by 7  
and not by 9. 
 
Let , ,A B C  be the set of integers that lies between 1 and 1000 both inclusive and that are divisible by   5, 

7 and 9 respectively. 
 

Therefore 
1000

200
5

A
 

= = 
 

, 
1000

142
7

B
 

= = 
 

,  
1000

111
9

C
 

= = 
 

 

1000 1000 1000
28, 15, 22

5 7 7 9 5 9
A B B C A C

     
 = =  = =  = =            

 

1000
3

5 7 9
A B C

 
  = =   

                                     

                               

The number of integers divisible by all the numbers (5, 7, 9) 3=  
 

28 3 25A B A B C −   = − = , No. of integers divisible by 5 and 7 but not by all the three 

 

22 3 19A C A B C −   = − = , No. of integers divisible by 5 and 9 but not by all the three 

 

25 19 200 25 19 153A − − = − − = , No. of integers divisible by 5 but not by 7 and not by 9. 

 
Example:   Determine the number of positive integers n , 1 2000n   that are not divisible by 2, 3 or 5,  
but are divisible by 7. 
 
Let , , ,A B C D  be the set of integers that lies between 1 and 2000 both inclusive and that are divisible by   

2, 3, 5, 7 respectively. 
 

Therefore 
2000

1000
2

A
 

= = 
 

, 
2000

666
3

B
 

= = 
 

,  
2000

400
5

C
 

= = 
 

,  
2000

285
7

D
 

= = 
 

 

2000 2000 2000 2000
333, 133, 57, 142

2 3 3 5 5 7 2 7
A B B C C D A D

       
 = =  = =  = =  = =                 

 

 
 

 

2000 2000
66, 47

2 3 5 2 3 7

2000 2000
19, 28

3 5 7 2 5 7

A B C A B D

B C D A C D

   
  = =   = =         

   
  = =   = =         
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2000
9

2 3 5 7
A B C D

 
   = =    

 

 
Also the number of integers divisible by all 2, 3, 5 and 7 is 9=  
 

47 9 38A B D A B C D  −    = − = , No. of integers divisible by 2, 3, 7 but not by all (2, 3, 5, 7) 

 

19 9 10B C D A B C D  −    = − = , No. of integers divisible by 3, 5, 7 but not by all (2, 3, 5, 7) 

 

28 9 19A C D A B C D  −    = − = , No. of integers divisible by 2, 5, 7 but not by all (2, 3, 5, 7) 

 

38 10 19 285 38 10 19 218D − − − = − − − = , No. of integers divisible by 7 but not by 2, not by 3 and not by 5. 

 
 
Note :  The number of r  combinations of n  distinct things with unlimited number of repetitions  
                                          = The number of ways of distributing r  similar balls in n  number of boxes 

                                          =The number of non negative integer solutions of  1 2 ... n rx x x x+ + + =  

                                          = ( 1 )n r Cr− +  

 
Example:   Use principle of inclusion and exclusion to determine how many solutions does the equation 

1 2 3 11x x x+ + =  have?, where 1 2 30 3, 0 4, 0 6x x x      . 

 

Let us find the total number of solutions of  1 2 3 11x x x+ + =  where 1 2 30, 0, 0.x x x    

It is 11(3 11 1)N C= + −  

              13 11C=  

              
13 2

78

C=

=
 

Let , ,A B C  represents the set of solution with the property 1 2 33, 4, 6x x x    respectively. 

 

Therefore required number of solutions is  N A B C−    

 i.e.  ( )....(1)N A B C A B B C C A A B C− + + −  −  −  +    

 

A =No. of solutions when 
1 4,5,...,11x = . Now ( )2 37, 7x x   

     

(3 7 1) 7

9 7

36

C

C

= + −

=

=

 

 

B =No. of solutions when 
2 5,6,...,11x = . Now ( )1 36, 6x x   
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(3 6 1) 6

8 6

28

C

C

= + −

=

=

 

 

C =No. of solutions when 3 7,8,...,11x = . Now ( )2 14, 4x x   

     

(3 4 1) 4

6 4

15

C

C

= + −

=

=

 

 

A B =  No. of solutions when 
1 24, 5x x  .  Now ( )3 2x   

             

(3 2 1) 2

4 2

6

C

C

= + −

=

=

 

 

B C =  No. of solutions when 2 35, 7x x  .  Now ( )1 1x  − , not possible. 

              0=  
 

C A =  No. of solutions when 3 17, 4x x  .  Now ( )2 0x   

             

(3 0 1) 0

2 0

1

C

C

= + −

=

=

 

 

A B C  =  No. of solutions when 1 2 34, 5, 7x x x   , not possible. 

                      0=  
 
From (1) , required number of solutions = 78  − 36 − 28 − 15 + 6 + 0 + 1 − 0) = 6 

 
Example:   Use principle of inclusion and exclusion to determine how many bit strings of length 8 either 
start with a 1 bit or end with the two bits 00’s? 
 
Let A  represents the set of strings of length 8 starting with 1. 
Let B  represents the set of strings of length 8 end with 00. 

Therefore required number of strings is  A B  

 i.e.  A B A B A B = + −   

 
72 128A = =  {because first place is 1 and the remaining 7 places are filled by either 0 or 1} 

62 64B = =  {because last two places is 00 and the remaining 6 places are filled by either 0 or 1} 

52 32A B = =   {because first place is 1 and last two places is 00 and the remaining 5 places are filled by 



 

77 

https://doi.org/10.5281/zenodo.15287608 

either 0 or 1} 

Therefore 128 64 32 160A B = + − = . 

Euler’s Phi Function: 
 

For , 2n Z n+  , let ( )n  be the number of positive integers m , where 1 m n   and gcd( , ) 1m n =  that is, 

,m n  are relatively prime. 

Result:  ( ) 1p p = −  if p  is prime. 

(4) 2 = .  Because 1 1,3 4m =  and gcd(1,4) 1, gcd(3,4) 1= =  

1 2

1 1 1
( ) 1 1 ... 1

m

n n
p p p


   

= − − −   
    

 where 1 2, , ..., mp p p  are distinct prime factors of n . 

 
Example:  Use the principle of inclusion-exclusion to derive a formula for ( )n  when the prime 

factorization of n  is  ma

m

aa
p.....ppn 21

21= .  

 

Let ma

m

aa
p.....ppn 21

21=  where 1 2, , ..., mp p p  are distinct prime factors of n  and 1.i   

Let {1, 2, 3, ......, }U n= . 

Let iA  be the subset of U  containing the integers that divisible by ip . 

Now the integers in U  relatively prime to n  are those in none of the subsets 1 2, , ..., mA A A . 

Therefore ( ) 1 2 1 2..... ...m mn A A A U A A A =    = −    . 

Also 1 2

1 2

, , ......., ....i i j m

i i j m

n n n
A A A A A A

p p p p p p
=  =    =

  
 

Therefore by principle of inclusion and exclusion 

( )
1 , 1 2

.....( 1)
m m

m

i i ji i j m

n n n
n n

p p p p p p


=

= − + + −
  

   

         
1 2

1 1 1
1 1 ..... 1

m

n
p p p

   
= − − −   
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EXERCISE 

1. In a class of 50 students, 20 students play foot ball and 16 students play hockey.  It is found that 10 

students play both the games.  Find the number of students who play neither. 

 
2. A total of 1232 students have taken a course in Spanish, 879 have taken a course in French and 

114 have taken a course in Russian.  Further, 103 have taken a courses in both Spanish and 
French, 23 have taken courses in both Spanish and Russian and 14 have taken courses in both 
French and Russian.  If 2092 students have taken at least one of Spanish, French and Russian, how 
many students have taken a course in all three languages? 

Hint:  Find S F R   from S F R S F R S F F R S R S F R  = + + −  −  −  +    

 
3. There are 2500 students in a college, of these 1700 have taken a course in C, 1000 have taken a 

course Pascal and 550 have taken a course in Networking.  Further 750 have taken courses in both 
C and Pascal,  400 have taken courses in both C and networking and 275 have taken courses in 
both Pascal and networking.  If 200 of these students have taken courses in C, Pascal, Networking  
(1)  How many of these 2500 students have taken a course in any of these three courses C, Pascal 
and Networking?  (2)  How many of these 2500 students have not taken a course in any of these 
three courses C, Pascal and Networking? 

 
4. Find the number of integers between 1 to 250 that are not divisible by any of the integers 2, 3, 5 

and 7. 
 
5. Find the number of integers between 1 to 100 that are not divisible by any of the integers 2, 3, 5 or 

7. 
 
6. Show that in any group of 8 people at least two have birthdays which falls on same day of the 

week in any given year. 
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Recurrence Relations 
 

Definition:  A recurrence relation for the sequence  ns  is an equation that expresses ns  in terms of the 

previous terms, namely  0 1 2 1, , ,....., ns s s s − , for all integers 0n n , a non negative integer. 

 
Example :   Consider the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, ……… 
 
Here a term is equal to sum of its previous two terms with starting values 0 and 1. 

Therefore the recurrence relation is 1 2;n n ns s s− −= +  subject to 0 10, 1.s s= =  

 
Definition:  If the terms of a sequence satisfy a recurrence relation, then the sequence is called a solution 
of the recurrence relation. 
 

Example:  Consider the sequence 2, 6, 18, 54, ..... .  If  na  represents this sequence, then the recurrence 

relation is 1 3.n

n

a

a

+ =   i.e.  1 3 , 0.n na a n+ =   

Assuming 0 2a = , we have 
1 2

1 0 2 13 3 2 , 3 3 6 3 2a a a a= =  = =  =   and so on.  In general 2 3 .nna =    It is the 

general solution of the recurrence relation. 
 
 
Example:  Find the first four terms of the sequence defined by the recurrence relations and initial condition 

2

1 1, 2n na a a−= = . 

The first four terms are 
2 2 2

1 2 1 3 2 4 32, 4, 16, 256.a a a a a a a= = = = = = =  

 

Note:  A recurrence relation of the form 0 1 1 2 2 ..... ( ),n n n k n ka y a y a y a y f n n k− − −+ + + + =   is called a linear 

recurrence relation, where 0 1 2, , ,..... ka a a a  are real numbers. 

It is of order k  if 0ka   i.e.  is ny  expressed in terms of the previous k  terms. 

If ( ) 0f n = , it is said to be homogeneous.  Otherwise non homogeneous. 

A recurrence relation may be denoted by various notations as ( ) ( ) ( )0 1 1 ..... ( )ka y n a y n a y n k f n+ − + + − =  

Instead of  y , any other dummy variable may be used. 

 
Formation of Recurrence Relation 
 

Example :   Find the recurrence relation of the sequence ( ) 1= n:ans n
. 

 

 Given ( ) ns n a=   and hence ( ) 1 1
1 n ns n a a

a

−− = =  
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                                                                  ( )1 nas n a− =  

  Therefore ( ) ( )1a s n S n− =  

Example :   Find the recurrence relation satisfying the equation ( ) ( )nn

n BAy 43 −+=  

 

 Given ( ) ( )nn

n BAy 43 −+=  

 Therefore ( ) ( ) ( )
1 1

1 3 4 3 3 4 4
n n nn

ny A B A B
+ +

+ = + − = − −  

        ( ) ( ) ( )
2 2

2 3 4 9 3 16 4
n n nn

ny A B A B
+ +

+ = + − = + −  

 Eliminating  the constants ( )1, 3
n

A  and ( )4
n

B −   from the three equations, we get 

 

1

2

1 1

3 4 0

9 16

n

n

n

y

y

y

+

+

− =  

( ) ( ) ( )1 2

1 2

1 2

48 36 16 9 4 3 0

84 7 7 0

12 0, 0

n n n

n n n

n n n

y y y

y y y

y y y for n

+ +

+ +

+ +

+ − − + − − =

− − =

− − = 

 

 

Aliter:  Given ( ) ( )nn

n BAy 43 −+=  

 Therefore ( ) ( ) ( )
1 1

1

1 1
3 4 3 4

3 4

n n nn

ny A B A B
− −

− = + − = − −  

         ( )112 4 3 3 4
nn

ny A B− = − −  

        ( ) ( ) ( )
2 2

2

1 1
3 4 3 4

9 16

n n nn

ny A B A B
− −

− = + − = + −  

       ( )2144 16 3 9 4
nn

ny A B− = + −  

 Eliminating  the constants ( )1, 3
n

A  and ( )4
n

B −   from the three equations, we get 

 

1

2

1 1

12 4 3 0

144 16 9

n

n

n

y

y

y

−

−

− =  

( ) ( ) ( )1 2

1 2

1 2

36 48 12 9 16 144 3 4 0

84 84 1008 0

12 0, 2

n n n

n n n

n n n

y y y

y y y

y y y for n

− −

− −

− −

+ − − + − − =

+ − =

+ − = 

 

 
 

Note:  Therefore 1 212 0, 0n n ny y y for n+ +− − =   is same as 1 212 0, 2n n ny y y for n− −+ − =   

 
Solution of Linear Recurrence Relations 
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Consider a second order recurrence relation  0 1 1 2 2 ( ), 2n n na y a y a y f n n− −+ + =   

Let the solution is ny =  complementary solution +  particular solution. 

 

Write the characteristic equation by putting 
2

1 2, , 1n n ny m y m y− −= = =  
2

0 1 2 0a m a m a+ + =  

Let the roots of the characteristic equation be 
1 2, .m m  

Case (i) 
If 

1 2m m , then the 

complementary solution is 

1 2

n nA m B m +   where ,A B  are 

arbitrary constants 

Case (ii) 
If 

1 2 ( )m m m= = , then the 

complementary solution is 

( ) nA B n m+   where ,A B  are 

arbitrary constants 

Case (iii) 

If ( )1 2 cos sinm m r i = =  , then 

the complementary solution is 

( )cos sin nA n B n m +  where 

,A B  are arbitrary constants 

 
If ( ) 0f n  , particular solution may be evaluated by assuming some standard substitutions which are 

given below. 
Form of ( )f n  Assumption of particular solution 

,C Constant 

n  
2n  
na  

2 nn a  

cos /sinn n   

cos / sinn na n a n   

,A  a constant 

0 1A n A+  
2

0 1 2A n An A+ +  
nA a  

( )2

0 1 2

na A n An A+ +  

sin cosA n B n +  

( )sin cosna A n B n +  

 
 
Example :  Solve the recurrence relation ( ) ( ) ( ) 2021618 =−+−− k:kykyky  , where ( ) ( ) 803162 == y,y  

 
The characteristic equation is 2 8 16 0m m− + =  

      ( )( )4 4 0m m− − =  

      4, 4m =  

 Therefore the general solution is ( )( ) 4ky k A Bk= +   

By using the initial conditions, we have 

 
( ) 2(2) 2 4

16 16 32 ........( )

y A B

A B i

= + 

= +
                          

( ) 3(3) 3 4

80 64 192 ........( )

y A B

A B ii

= + 

= +
 

  
Solving  ( )i  and ( )ii  
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64 64 128

80 64 192

A B

A B

= +

= +

−−−−−−−−−−−

 

   Subtracting     16 64B=  

                                                                     4B =  
 

From ( )i ,  16 16 32 4A= +   

                                            7A= −  
 

Therefore the general solution is ( ) ( )( ) 4 7 4 4k ky k A Bk k= +  = − +   

 

Example :  Solve the recurrence relation 321 33 −−− −−−= nnnn aaaa  given that 95 10 == a,a  and 152 =a . 

 

Given recurrence relation is 1 2 33 3 0n n n na a a a− − −+ + + =  

The characteristic equation is 3 23 3 1 0m m m+ + + =  
Here 1m = −  is a root.  By synthetic division, we get  2 2 1 0m m+ + =  

      ( )
2

1 0m + =  

      1, 1m = − −  

  

 Therefore the general solution is ( )2 ( 1)n

na A Bn Cn= + +  −  

 By using the initial conditions, we have  

 ( )2 0

0 0 0 ( 1)

5

a A B C

A

= +  +   −

=
          

( )2 1

1 1 1 ( 1)

9

14.....( )

a A B C

A B C

B C i

= +  +   −

= − − −

+ = −

         

( )2 2

2 2 2 ( 1)

15 2 4

2 4 10.....( )

a A B C

A B C

B C ii

= +  +   −

= + +

+ =

 

  
Solving  ( )i  and ( )ii  

     

2 2 28

2 4 10

B C

B C

+ = −

+ =

−−−−−−−−−

 

                                            Subtracting   2 38C =  

                                                                            19C =  
 
 From ( )i ,  19 14B+ = −  

                                            33B = −  
 

Therefore the general solution is ( )25 33 19 ( 1)n

na n n= − +  −  

 

Example :    Solve the recurrence relation ( ) ( ) ( )nnSnS 3513 =−− ,  with ( ) 20 =S   

 
The auxiliary equation is 3 0 − =  and hence 3 = . 
Therefore the complementary function is 3nA . 
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Let the particular integral is of the form ( )( ) 3nS n cn=  

Therefore given relation becomes ( ) ( ) ( )13 3 ( 1) 3 5 3n n ncn c n −− − =  

Comparing the coefficient of ( )3n  on both sides, we get    ( ) ( ) ( )3 ( 1) 3 5 3n n ncn c n− − =  

                     ( 1) 5cn c n− − =  

         5c =  

The solution is  ( ) . . 3 5 3n nS n C F P I A n= + = +  

Since  ( ) 20 =S ,  
0(0) 3 5(0)3nS A= +  

                                    2 A=  
 

  ( ) 2 3 5 3n nS n n =  +  

 
 
 
Example :   Solve ( ) ( ) ( ) 6821017 +=−+−− kkGkGkG , for 2k  . 

 
 The characteristic equation is 2 7 10 0m m− + =  

      ( )( )2 5 0m m− − =  

      2, 5m =  

  
 Therefore the complementary function is 2 5k kA B +   

 Since RHS is of the form 8 6k + , let the particular integral be assumed as  0 1( )G k a a k= + . 

 Using this in the given recurrence relation, we have 

  ( ) ( ) ( )0 1 0 1 0 17 ( 1) 10 ( 2) 8 6a a k a a k a a k k+ − + − + + − = +  

  ( ) ( ) ( )0 1 0 1 1 0 1 17 10 2 8 6a a k a a k a a a k a k+ − + − + + − = +  

 Comparing the coefficients of k  and constants, we get 

 
1 1 17 10 8a a a− + =    and   0 0 1 0 17 7 10 20 6a a a a a− + + − =  

 
14 8a =              and     0 14 13 6a a− =  

 
1 2a =   and  04 13 2 6a −  =  

                    0 8a =  

 Therefore the solution is ( )( ) . . 2 5 8 2k kG k C F P I A B k= + =  +  + +  

 

Example :   Solve the recurrence relation .a,n,nnaa nn 303 0

2

1 =−=−+  

 
The auxiliary equation is 1 0 − =  and hence 1 = . 

Therefore the complementary function is 1nK  . 

Here RHS is of the form ( )23 1nn n−   and also characteristic root is 1, 
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let the particular integral is of the form ( )2

na An Bn C n= + + .  Hence ( )2

1 ( 1) ( 1) ( 1)na A n B n C n+ = + + + + +  

Therefore given relation becomes ( ) ( )2 2 2( 1) ( 1) ( 1) ( ) 3A n B n C n An Bn C n n n+ + + + + − + + = −  

( ) ( )3 2 3 2 2( 1) ( 1) ( 1) 3A n B n C n An Bn Cn n n+ + + + + − + + = −  

( ) ( )3 2 2 3 2 23 3 1 2 1 3A n n n B n n Cn C An Bn Cn n n+ + + + + + + + − − − = −  

Comparing the like coefficients, we get 
 
3 3 3 2 1 0

1 2 4 1 2 0

2 1

A B B A B C C A B C

A B C

B C

+ − = + + − = − + + =

= = − − + =

= − =

 

 

Therefore particular integral ( )2 2 1na n n n= − +  

Therefore the general solution is ( )21 2 1n

na CF PI K n n n= + =  + − +   

 

Example :   Solve  ( ) ( ) 0372396 12 +=+− ++ n,aaa nn

nnn   given that 0 11, 4a a= = . 

 
     The characteristic equation is 2 6 9 0m m− + =  

      ( )
2

3 0m − =  

                 3, 3m =  

 Therefore the complementary function is ( ) 3nA Bn+   

 Let the particular integral be  
22 3n n

na C Dn=  +  , since 3 is the double root. 

 Using this in the given recurrence relation, we have 
 

 ( ) ( ) ( ) ( ) ( )2 2 2 1 2 1 22 ( 2) 3 6 2 ( 1) 3 9 2 3 3 2 7 3n n n n n n n nC D n C D n C Dn+ + + + + +  −  + +  +  +  = +  

 

 ( ) ( ) ( ) ( ) ( )2 2 24 2 9 ( 2) 3 6 2 2 3 ( 1) 3 9 2 3 3 2 7 3n n n n n n n nC D n C D n C Dn + +  −  + +  +  +  = +  

 

 ( ) ( ) ( ) ( ) ( )2 2 24 2 9 ( 2) 3 6 2 2 3 ( 1) 3 9 2 3 3 2 7 3n n n n n n n nC D n C D n C Dn + +  −  + +  +  +  = +  

  
Comparing the like terms, we have 

( ) 2 2 2

2 2 2

4 12 9 3 & 9 ( 2) 18 ( 1) 9 7

3 9 36 36 18 18 36 9 7

18 7

7

18

C C C D n D n Dn

C Dn D Dn Dn D Dn Dn

D

D

− + = + − + + =

= + + − − − + =

=

=

 

 Therefore the particular integral becomes 27
3 2 3

18

n n

na n=  +   

 



 

85 

https://doi.org/10.5281/zenodo.15287608 

 Hence the general solution is  na CF PI= +  

                                                                        ( ) 27
3 3 2 3

18

n n n

na A Bn n= +  +  +   

By using the initial conditions,  
 

  

( ) 0 0 2 0

0

7
0 3 3 2 0 3

18

1 3

2

a A B

A

A

= +   +  + 

= +

= −

       and       

( ) 1 1 2 1

1

7
1 3 3 2 1 3

18

7
4 3 3 6

6

7
4 6 3 6

6

17

18

a A B

A B

B

B

= +   +  + 

= + + +

= − + + +

=

 

 

 Therefore 
217 7

2 3 3 2 3
18 18

n n n

na n n
 

= − +  +  +  
 

 

 
 
Example :   A factory makes custom sports car at an increasing rate.  In the first month only one car is 
made, in the second month two cars are made, and so on, with n  cars made in the n th month. 

i.  Set up recurrence relation for the number of cars produced in the first n  months by this 
factory. 

 ii.   How many cars are produced in the first year? 
Given that 

End of 
month 

1 2 3 ….. n  ….. 

No. of cars 
produced 

1 2 3 ….. n  ….. 

 

Let na  represents number of cars produced in n  months.  Then 1 1, 1n na a n−= +    such that 0 0a = .   

Now we solve the recurrence relation. 
The auxiliary equation is 1 0 − =  and hence 1 = . 

Therefore the complementary function is 1nA . 

Let the particular integral is of the form na K n= ,  since RHS is 1 and 1 is a root of the auxiliary equation. 

Therefore given relation becomes ( 1) 1Kn K n− − =  

              1K =  

The solution is  . . 1n

na C F P I A n= + =  +  

Since  0 0a = ,  
0

0 1 0a A=  +  

                                    0 A=  

  Therefore na n= . 

Number of cars produced in first year ( 12)n =  is 
12 12a =  
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EXERCISE 
 

1. Find the recurrence relation of the sequence ( ) : 1ns n a n=   

   

2. Solve :  ,aa kk 13 −=  for 1k  with 20 =a . 

 

3. Write a particular solution of the recurrence relation 
n

nnn aaa 396 21 +−= −− . 

 

4. Solve  1 25 6 0n n na a a− −− + = . 

 

5. Solve the recurrence relation 1 28 16 2,n n na a a n− −= −  for 0 116, 80a a= = . 

6. Find the solution to the recurrence relation 321 6116 −−− +−= nnnn aaaa , with the initial conditions 

52 10 == a,a  and 152 =a . 
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Generating Functions 
 

Definition:  The generating function for the sequence 0 1 2, , ,....., , ........ns s s s  of real numbers is the infinite 

series ( ) 1 2

0 1 2

0

, ...... ....n k

n k

k

G s z s s z s z s z s z


=

= + + + + + =  where z  is the dummy variable. 

 
Note:  The generating function for the sequence 1, 2, 3, 4, …. is given by 

( ) 1 2 2

0

, 1 2 3 ...... ( 1) (1 2 )n

n

G s z z z n z z


−

=

= + + + = + = −  

Example:  Write the generating function for the sequence 
2 31, , , , .......a a a  

 

The generating function is ( ) 1 2 2, 1 ...... ......n nG a z az a z a z= + + + + +  

                                                                  ( )
1

1 az
−

= −   if  1az   

                                                                  
( )

1

1 az
=

−
  if  

1
, 0z a

a
   

 
Solution of Recurrence Relation by Using Generating Functions 
 
Example :   Use generating function to solve the recurrence relation ( ) ( ) ( ) 02617 =−+−− nSnSnS , for 

2n  with ( ) ( ) .S,S 6180 ==  

 

For our convenience, rewrite the given equation as 1 27 6 0n n nS S S− −− + =  for 2n  with 0 18, 6.S S= =  

Let ( ) 2 1 2

2 0 1 2

2

, ......n

n

n

G S z S z S S z S z


−

−

=

= = + + +  be the generating function of the sequence  nS . 

Given that 1 27 6 0n n nS S S− −− + =  for 2n  . 

Therefore 1 2

2 2 2

7 6 0n n n

n n n

n n n

S z S z S z
  

− −

= = =

− + =    

                    
1 2 2

1 2

2 2 2

7 6 0n n n

n n n

n n n

S z z S z z S z
  

− −

− −

= = =

− + =    

      ( ) ( ) ( )2 3 1 2 2 1 2

2 3 1 2 0 1 2...... 7 ...... 6 ...... 0S z S z z S z S z z S S z S z+ + − + + + + + + =  
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    ( ) ( ) ( )1 2

0 1 0, 7 , 6 , 0G S z S S z z G S z S z G S z − − − − + =     

    ( ) ( ) ( )2, 8 6 7 , 8 6 , 0G S z z z G S z z G S z− − − − + =        

    ( )( )2, 1 7 6 6 56 8 0G S z z z z z− + − + − =  

    ( )( )2, 6 7 1 8 50G S z z z z− + = −  

    ( )
( )2

8 50
,

6 7 1

z
G S z

z z

−
=

− +
 

     

    ( )
( )( )

8 50
,

6 1 1

z
G S z

z z

−
=

− −
 

    ( )
( )( )

8 50
,

1 6 1

z
G S z

z z

−
=

− −
 

    

   
( )( ) ( ) ( )

8 50

1 6 1 1 6 1

z A B

z z z z

−
= +

− − − −
 

   ( ) ( )8 50 1 1 6z A z B z− = − + −  

    

1
1

6

50 1
42 5 8 1

6 6

2 5
42 5

6 6

42 2

5 5

When z z

B A

B A

B A

= =

 
− = − − = − 

 

= − =

= = −

 

 

 ( )
( )( ) ( ) ( )

8 50 2 1 42 1
,

1 6 1 5 1 6 5 1

z
G S z

z z z z

−
= = − +

− − − −
 

  

 ( ) ( ) ( )
1 12 42

, 1 6 1
5 5

G S z z z
− −

= − − + −  

 ( ) ( ) ( )( ) ( ) ( )( )2 22 42
, 1 6 6 ... 1 ...

5 5
G S z z z z z= − + + + + − + −  

 
 Therefore the general solution is given by  

             ( )
2 42

, 6 1
5 5

n n n

nS coefficient of z in G S z= = − +  

 

Example :   Using the generating function, solve the difference equation 00612 =−− ++ n,yyy nnn  with 

12 10 == y,y   
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Let ( ) 1 2

0 1 2

0

, .....n n

n

G y z y z y y z y z


=

= = + + +  be the generating function of the sequence  ny . 

 

Given that 2 1 6 0n n ny y y+ +− − =  for 0n  . 

Therefore 2 1

0 0 0

6 0n n n

n n n

n n n

y z y z y z
  

+ +

= = =

− − =    

                    
2 1

2 12
0 0 0

1 1
6 0n n n

n n n

n n n

y z y z y z
z z

  
+ +

+ +

= = =

− − =    

      ( ) ( ) ( )2 3 1 2

2 3 1 22

1 1
...... ...... 6 , 0y z y z y z y z G y z

z z
+ + − + + − =  

    ( ) ( ) ( )1

0 1 02

1 1
, , 6 , 0G y z y y z G y z y G y z

z z
 − − − − − =   

 

    ( ) ( ) ( )2

1 1
, 2 , 2 6 , 0G y z z G y z G y z

z z
− − − − − =        

    ( ) 2 2 2

1 1 2 2
, 6 0

z
G y z

z z z z z

 
− − − − + = 

 
 

    ( ) 2 2 2

1 1 2 2
, 6

z
G y z

z z z z z

 
− − = + − 

 
 

    ( ) 2 2

1 1 2 2
, 6

z z
G y z

z z z

+ − 
− − = 

 
 

    ( )
2

2 2

1 6 2
,

z z z
G y z

z z

 − − −
= 

 
 

    ( ) 2

2
,

1 6

z
G y z

z z

−
=

− −
 

    ( ) 2

2
,

6 1

z
G y z

z z

−
=

+ −
 

   ( )
( )( )

2
,

1 3 1 2

z
G y z

z z

−
=

− +
 

   
( )( ) ( ) ( )

2

1 3 1 2 1 3 1 2

z A B

z z z z

−
= +

− + − +
 

   ( ) ( )2 1 2 1 3z A z B z− = + + −  
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( ) ( )2 1 2 1 3

1 1

2 3

1 3 1 2
2 1 2 1

2 2 3 3

5 5 5 5

2 2 3 3

1 1

z A z B z

When z z

B A

B A

B A

− = + + −

= − =

   
− − = + − = +   

   

− = − =

= − = −

 

 

 
( )( ) ( ) ( )

2 1 1

1 3 1 2 1 3 1 2

z

z z z z

− − −
= +

− + − +
 

 ( )
( )( ) ( ) ( )

2 1 1
,

1 3 1 2 1 3 1 2

z
G y z

z z z z

−
= = +

− + − +
 

  

 ( ) ( ) ( )
1 1

, 1 3 1 2G y z z z
− −

= − + +  

 ( ) ( ) ( )( ) ( ) ( )( )2 2
, 1 3 3 ... 1 2 3 ...G y z z z z z= + + + + − + −  

 Therefore the general solution is      ( ), 3 ( 2)n n n

ny coefficient of z in G y z= = + −  

 

Example :   Solve the recurrence relation 123 1 += − n,aa nn  with 10 =a  by the method of generating 

functions. 
 

For our convenience, let us rewrite the recurrence relation as 13 2n ny y −= +  such that 0 1y = . 

Let ( ) 1 2

0 1 2

0

, .....n n

n

G Y z y z y y z y z


=

= = + + +  be the generating function of the sequence  ny . 

 

Given that 13 2n ny y −= +  for 1n  . 

Therefore 1

1 1 1

3 2n n n

n n

n n n

y z y z z
  

−

= = =

= +    

      ( ) ( ) ( )1 2 3 1 2 1 2 3

1 2 3 0 1...... 3 ...... 2 ......y z y z y z y z y z z z z+ + + = + + + + + +  

      ( ) ( ) ( )1 2 3 1 1 2

0 1 2 3 0 0 1...... 3 ...... 2 1 ......y y z y z y z y z y y z z z z+ + + + − = + + + + + +  

    ( )( ) ( ) ( )
1

0, 3 , 2 1G Y z y zG Y z z z
−

− = + −  

 ( )( ) ( ) ( )
1

, 1 3 , 2 1G Y z zG Y z z z
−

− = + −  

 ( )( )
2

, 1 3 1
1

z
G Y z z

z
− = +

−
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 ( )( )
2 1

, 1 3
1

z z
G Y z z

z

+ −
− =

−
 

 ( )
( )( )

1
,

1 3 1

z
G Y z

z z

+
=

− −
 

 
By splitting in to partial fractions,  
 

( )
( ) ( )

3 2
,

1 3 1
G Y z

z z
= −

− −
 

( ) ( ) ( )
1 1

, 3 1 3 2 1G Y z z z
− −

= − − −  

( ) ( ) ( )( ) ( ) ( )( )2 2
, 3 1 3 3 .... 2 1 ....G Y z z z z z= + + + − + + +  

Therefore the general solution is given by  

( ),n

ny coefficient of z in G Y z=  

3 3 2 1n n

ny =  −   

 

         
( )( ) ( ) ( )

1

1 3 1 1 3 1

z A B

z z z z

+
= +

− − − −
 

                          ( ) ( )1 1 1 3z A z B z+ = − + −  

            Put 1z =        Put  0z =  

                 2B = −            3A =                       

 
Example :   Use the method of generating function to solve the recurrence relation  

1 24 4 4 ; 2n

n n na a a n− −= − +   given that 0 12, 8a a= = . 

For our convenience, let us rewrite the recurrence relation as 1 24 4 4n

n n ny y y− −= − +  such that 

0 12, 8y y= = . 

Let ( ) 1 2

0 1 2

0

, .....n n

n

G y z y z y y z y z


=

= = + + +  be the generating function of the sequence  ny . 

 

Given that 1 24 4 4n

n n ny y y− −= − +  for 2n  . 

Therefore 1 2

2 2 2 2

4 4 4n n n n n

n n n

n n n n

y z y z y z z
   

− −

= = = =

= − +     

                     

      ( ) ( ) ( ) ( )2 3 2 3 2 3 2 2 3 3

2 3 1 2 0 1...... 4 ...... 4 ...... 4 4 ......y z y z y z y z y z y z z z+ + = + + − + + + + +  

    ( )( ) ( )( ) ( )2

0 1 0

1
, 4 , 4 , 1 4

1 4
G Y z y y z z G Y z y z G Y z z

z
− − = − − + − −

−
 

    ( )( ) ( )( ) ( )2 1
, 2 8 4 , 2 4 , 1 4

1 4
G Y z z z G Y z z G Y z z

z
− − = − − + − −

−
 

     ( )( )2 1
, 1 4 4 1 4 2

1 4
G Y z z z z

z
− + = − − +

−
 

 ( )( )
2 1

, 1 2 1 4
1 4

G Y z z z
z

− = + −
−

 

 ( )
( ) ( )

2

2

1 (1 4 )
,

1 2 1 4

z
G Y z

z z

+ −
=

− −
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By splitting in to partial fractions,  
 

( )
( ) ( )2

2 4
,

1 41 2
G Y z

zz
= − +

−−
 

( ) ( ) ( )
2 1

, 2 1 2 4 1 4G Y z z z
− −

= − − + −  

( ) ( ) ( )( )
( ) ( )( )

2

2

, 2 1 2 2 3 2 ....

4 1 4 4 ....

G Y z z z

z z

= − + + + +

+ + +

 

 
Therefore the general solution is given by 

( ),n

ny coefficient of z in G Y z=  

2 ( 1) 2 4 4n n

ny n= −  +  +   
1 14 ( 1) 2n n

ny n+ += − +   

( ) ( ) ( ) ( ) ( )

2

2 2

1 (1 4 )

1 2 1 41 2 1 4 1 2

z A B C

z zz z z

+ −
= + +

− −− − −
 

( )( ) ( ) ( )
221 (1 4 ) 1 2 1 4 1 4 1 2z A z z B z C z+ − = − − + − + −  

Put 2 1z =      Put  4 1z =            Put  0z =  

2

2

B

B

= −

= −
          1 4

4

C

C

=

=

                     2

0

A B C

A

= + +

=
 

Example :   Using generating function method solve the recurrence relation 2 12 2n

n n na a a+ +− + =  where 

00, 2n a =  and  
1 1a = . 

 

For our convenience, let the recurrence relation be 2 12 2 , 0n

n n ny y y n+ +− + =   such that 0 12, 1y y= = . 

 

Let ( ) 1 2

0 1 2

0

, .....n n

n

G y z y z y y z y z


=

= = + + +  be the generating function of the sequence  ny . 

 

Given that 2 12 2 , 0n

n n ny y y n+ +− + =  . 

Therefore 2 1

0 0 0 0

2 2n n n n n

n n n

n n n n

y z y z y z z
   

+ +

= = = =

− + =     

                     

     ( ) ( ) ( ) ( )1 2 1 2 1 2 1 1 2 2 3 3

2 3 4 1 2 3 0 1 2...... 2 ...... ...... 1 2 2 2 ......y y z y z y y z y z y y z y z z z z+ + + − + + + + + + + = + + + +  

( ) ( ) ( ) ( ) ( ) ( )( )1 2 32 3 4 1 2 3 1 2

2 3 4 1 2 3 0 1 22

1 2
...... ...... ...... 1 2 2 2 ......y z y z y z y z y z y z y y z y z z z z

z z
+ + + − + + + + + + + = + + + +  

( )( ) ( )( ) ( ) ( )
11

0 1 02

1 2
, , , 1 2G Y z y y z G Y z y G Y z z

z z

−
− − − − + = −  

( )( ) ( )( ) ( ) ( )

( )

11

2

2 2

1 2
, 2 , 2 , 1 2

1 2 2 1 4 1
, 1

1 2

G Y z z G Y z G Y z z
z z

G Y z
z z z z z z

−
− − − − + = −

 
− + − − + = 

− 

 

( )
2

2 2

1 2 2 4 1
,

1 2

z z z z
G Y z

z z z

 − + − − +
+ = 

− 
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( )
2

2 2

1 2 1 3 2
,

1 2

z z z
G Y z

z z z

 − + −
= − 

− 
 

( )
( )

2 2 2

2 2

(1 ) 3 2 6 4
,

1 2

z z z z z
G Y z

z z z

− − + + −
=

−
 

( )
( )

2

2

7 7 2
,

(1 ) 1 2

z z
G Y z

z z

− +
=

− −
 

By splitting in to partial fractions,  
 

( )
( ) ( ) ( )2

3 2 1
,

1 1 21
G Y z

z zz
= − +

− −−
 

( ) ( ) ( ) ( )
1 2 1

, 3 1 2 1 1 2G Y z z z z
− − −

= − − − + −  

( ) ( ) ( )

( )

2 2

2

, 3 1 ..... 2 1 2 3 ....

1 (2 ) (2 ) ....

G Y z z z z z

z z

= + + + − + + +

+ + + +
 

Therefore the general solution is given by  

( ),n

ny coefficient of z in G Y z=  

 

3 2 ( 1) 2n

ny n n=  −  + +  

 

( ) ( ) ( ) ( )

2

22

7 7 2

(1 ) 1 2 1 1 21

z z A B C

z z z zz

− +
= + +

− − − −−
 

2 27 7 2 (1 )(1 2 ) (1 2 ) (1 )z z A z z B z C z− + = − − + − + −  

Put 1z =        Put  
1

2
z =                           Put  0z =  

2

2

B

B

= −

= −
          

7 7
2

4 2 4

1

C

C

− + =

=

                2

3

A B C

A

= + +

=
 

 

Example :   A valid code word is an n -digit decimal number containing even number of 0’s.  If na  denotes 

the number of valid code words of length n  then find an explicit formula for na  using generating 

functions. 
 

Let na  be the number of valid n -digit codewords.  Now 
1 9a = because the string 0, is not valid. 

 
To form a valid n -digit string from strings of 1n−  digits. 
 

Method 1: 
A valid string of n  digits can be obtained by 
appending a valid string of 1n−  digits with a digit 
other than 0.   
 
This appending can be done in nine ways. Hence, a 

valid string with n  digits can be formed in 19 na −  

ways. 

Method 2: 
A valid string of n  digits can be obtained by 
appending a 0 to a string of length 1n−  that has an 
odd number of 0 digits. 
 
The number of ways that this can be done equals 
the number of invalid 1n−  digit strings. Because 

there are 110 n−  strings of length 1n− , and 1na −  are 

valid, there are 1

110 n

na−

−−  valid n -digit strings. 
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All valid strings of length n  are produced in one of these two ways.  Therefore 
 

( )1

1

1 1

1

9 10

8 10

n

n

n n n

n

a a a

a

−

−

− −

−

= + −

= +
 

 

To solve 1

18 10 n

n na a −

−= +  subject to 0 1a = (assumption), 
1 9a =  by generating function. 

 

With usual notations, 1

18 10 , 1n

n ny y n−

−= +   subject to 0 11, 9y y= = . 

Let ( ) 1 2

0 1 2

0

, .....n

n

n

G y z y z y y z y z


=

= = + + +  be the generating function of the sequence  ny . 

 

   1

1

1 1 1

8 10 n

n n n
n n n

n n

n n n

y z y z z−

−

= = =

= +    

   11 1

1

1 1 1

8 10 n

n n n
n n n

n n

n n n

y z z y z z z−− −

−

= = =

= +    

   1 2 3 0 1 2 0 0 1 1 2 2

1 2 3 0 1 2..... 8 ..... 10 10 10 ....y z y z y z z y z y z y z z z z z     + + = + + + + + +       

   ( ) ( )  
1

0, 8 , 1 10G Y z y zG Y z z z
−

− = + −  

   ( ) ( )
 

1 8 , 1
1 10

z
z G Y z

z
− = +

−
 

   ( ) ( )
 

1 10
1 8 ,

1 10

z z
z G Y z

z

− +
− =

−
 

   ( )
( )( )

1 9
,

1 8 1 10

z
G Y z

z z

−
=

− −
 

  

( )
( ) ( )

1 1 1 1
,

2 1 8 2 1 10
G Y z

z z
= +

− −
 

( ) ( ) ( )
1 11 1

, 1 8 1 10
2 2

G Y z z z
− −

= − + −  

( ) ( ) ( )

( ) ( )

2

2

1
, 1 8 8 ...

2

1
1 10 10 ...

2

G Y z z z

z z

 = + + + +
 

 + + +
 

 

 
Therefore the general solution is given by  

( ),n

ny coefficient of z in G Y z=  

 

By partial fraction 

( )( ) ( ) ( )
1 9

1 8 1 10 1 8 1 10

z A B

z z z z

−
= +

− − − −
 

( ) ( )1 9 1 10 1 8z A z B z− = − + −  
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1 1
8 10

2 2

n n

ny = +  

 

( ) ( )1 9 1 10 1 8

1 1

10 8

9 8 9 10
1 1 1 1

10 10 8 8

1 2 1 2

10 10 8 8

1 1

2 2

z A z B z

When z z

B A

B A

B A

− = − + −

= =

   
− = − − = −   

   

= − = −

= =

 

 
 
 

Example:   Use generating function to determine how many solutions does the equation 1 2 3 11x x x+ + =  

have?, when 

(i)   1 2 3, ,x x x  are non negative integers 

(ii)  Integers and  1 2 30 3, 0 4, 0 6x x x       

(iii)  Integers and 1 2 32, 3, 4x x x   . 

 

Let 1 2 3 11x x x
x x

+ +
=   and hence  31 2 11xx xx x x x  =  

 

(i)   1 2 3, ,x x x  are non negative integers 

 

Therefore the generating function is ( )( )( )0 1 2 0 1 2 0 1 2( )G x x x x x x x x x x= + + +  + + +  + + +   

                                                                                 ( )( )( )1 2 1 2 1 21 1 1x x x x x x= + + +  + + +  + + +   

                                                                                 ( )
3

1 x
−

= −  

                  ( )
0

3 n

n

x
n



=

− 
= − 

 
  

      ( ) ( ) ( )
0

3 1
1 1

n n n

n

n
x

n



=

+ − 
= − − 

 
  

      ( )
0

3 1 n

n

n
x

n



=

+ − 
=  

 
  

 

The number of solutions for 1 2 3 11x x x+ + =  is the coefficient of 
11x  in ( )G x . 
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Coefficient of 
11x  is  

3 11 1 13 13 13 12
78

11 11 2 1 2

+ −      
= = = =     

     
 

(ii)  1 2 30 3, 0 4, 0 6x x x       

The generating function with the given condition is  

( )( )( )0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 6 11x x x x x x x x x x x x x x x x x+ + + + + + + + + + + + + =  

The possible solutions are ( )1 4 6, , ,x x x ( )2 4 5, , ,x x x  ( )2 3 6, , ,x x x   ( )3 3 5, , ,x x x  ( )3 4 4, ,x x x  

 

The solutions are  ( )1, 4, 6 , ( )2, 4, 5 ,  ( )2, 3, 6 ,   ( )3, 3, 5 ,  ( )3, 4, 4  

 

(iii)  1 2 32, 3, 4x x x   . 

The generating function with the given condition is  

( )( )( )2 3 4 3 4 5 4 5 6( )G x x x x x x x x x x= + + +  + + +  + + +   

                                                   ( ) ( ) ( )2 2 3 2 4 21 1 1x x x x x x x x x= + + +   + + +   + + +   

             ( )
39 1x x
−

= −  

             ( )9

0

3
1

n n

n

x x
n



=

− 
= − 

 
   

                                                   ( ) ( ) ( )9

0

3 1
1 1

n n n

n

n
x x

n



=

+ − 
= − − 

 
  

             ( )9

0

3 1 n

n

n
x x

n



=

+ − 
=  

 
  

 

The number of solutions for 1 2 3 11x x x+ + =  is the coefficient of ( )2 11 9 2x x x x=   in the expansion of 

( )G x . 

 

Coefficient of 
2x  is  

3 2 1 4 4 3
6

2 2 1 2

+ −    
= = =   
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EXERCISE 
 

1. Write the generating function for the sequence ,.........a,a,a, 321  

 
2. Find the generating function of Fibonacci sequence. 
 

3. Use the method of generating function, solve the recurrence relation 2043 21 =−+ −− n:SSS nnn   

given 30 =S  and 21 −=S . 

 

4. Solve the recurrence relation 2067 21 =+− −− n,aaa nnn   with the initial conditions 68 10 == a,a  

using generating function.  
 
5. Solve the recurrence relations ( ) ( 1) 2 ( 2)S n S n S n= − + −  with (0) 3, (1) 1; 2S S n= =   using 

generating function. 
 

6. Using generating function, solve the recurrence relation 065 21 =+− −− nnn aaa  where 02 0 = a,n  

and 11 =a . 

 

7. Using generating function solve:  0065 12 =+− ++ n,yyy nnn  with .y,y 11 10 ==  

 

8. Use generating functions to solve the recurrence relation 1 22 3 0, 2n n na a a n− −− − =   with  

0 13, 1a a= = . 
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UNIT III  −  GRAPHS 
 

A graph   ,G V E=  consists of non empty set of vertices V  and a set of edges E  such that each edge is 

mapped to an unordered pair of vertices. 

 

Note:  To draw the graph, vertices are denoted by small dots and edges are denoted by a line joining the 

vertices.  Each edge has either one or two vertices associated with it, called its endpoints 

 

Example:  Let  ,G V E=  where  1 2 3 4 5, , , ,V v v v v v=   

and   1 2 3 4 5 6 7 8, , , , , , ,E e e e e e e e e=  such that 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2 1 2 3 3 2 4 3 4

5 3 3 6 1 3 7 2 4 8 4 5

, , , ,

, , , ,

e v v e v v e v v e v v

e v v e v v e v v e v v

= = = =

= = = =

 

 
 

 

 

 
 

 
 

Examples of some Graphs 

Note:   

• A single vertex itself a graph (trivial) and a single edge itself a graph  

• A pair of vertices that are connected by an edge is called adjacent vertices − ( ) ( )1 2 3 2, , ,v v v v  

• If two edges are incident with a common vertex, then they are said to be adjacent edges − 3 4,e e  

• If the end vertices of an edge are same, it is called a self loop − 5e  

• If more than one edges have the common end vertex, they are called parallel edges − 1 2,e e  

 

Definition: A graph which has neither self loop nor parallel edges is called a simple graph.  A graph 

which contains parallel edges is called multigraph.  A graph which has self loops and parallel edges is 

called pseudo graph.  

     

Simple Graph Multi Graph Pseudo Graph 
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Definition:  The number of edges incident on a vertex, counting self loop twice, is called the degree of 

the vertex.   

In the above graph G ,  ( ) ( ) ( ) ( ) ( )1 2 3 4 5deg 3, deg 4, deg 5, deg 3, deg 1v v v v v= = = = =  

A vertex with degree 1 is called a pendant vertex.   

A vertex with degree 0 is called isolated vertex.  It is not adjacent to any other vertices 

If there is an edge between two vertices, they are said to be adjacent. 

A graph with only isolated vertices is called null graph. 

 
Example:  Draw the graph with 5 vertices A, B, C, D, E such that deg(A)=3, B is an odd vertex, deg(C)=2  
and D and E are adjacent. 

 
The Handshaking Theorem :  The sum of degrees of all vertices of a graph is twice the number of edges. 

Proof: Let G  be a graph with n  vertices and ' 'e  number of edges. 

     We know that each edge is incident on two vertices. 

    So  each edge contributes two degrees. 

 Therefore ' 'e  number edges contributes '2 'e  degrees. 

 i.e. ( )
1

2.
n

i

i

d v e
=

=            

 

Example:  If all the vertices of an undirected graph each of degree k , show that the number of edges of 
the graph is a multiple of k . 
 

 Let G  be a graph with n  vertices and ' 'e  number of edges. 

 Since all vertices each of degree k , the total degree of the graph is nk . 

 By the hand shacking theorem, ( )
1

2.
n

i

i

d v e
=

=  

                    

. 2.

.
2

n k e

n
e k

=

 
=  

 

 

 i.e. the number of edges of the graph is  multiple of k . 
  

Do you know:  In the above example, suppose all vertices are each of odd degree k , then ....?e =  
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Example:  How many edges are there in a graph with 4 vertices each of degree three? 

 Sum of degrees of all vertices = 4 3 12 =  

 But sum of degrees = 2 (number of edges) 

           Therefore  12 = 2.e  

                                               6e =  

 

Example:  What is the largest possible number of vertices in a graph with 35 edges and all vertices of 

degree at least three. 

 

Given number of edges 35.  Therefore sum of degrees is 2 . 70no of edges =  

Let there are n  vertices and each of degrees at least 3.  Therefore 3 70n   

                                                                                                                                     
70

23
3

n   

Therefore, largest possible number of vertices in the graph is 23. 

 

Theorem:  In any graph, the number of odd degree vertices is always even. 

 

Proof:  Let G  be a graph with n  vertices and ' 'e  number of edges 

By previous theorem, we know that ( )
1

2.
n

i

i

d v e
=

=  

We split the LHS as sum of odd degree vertices and even degree vertices.  Then  

     ( ) ( ) 2.i j

odd even

d v d v e+ =   

     ( ) . .i

odd

d v Even No Even No+ =  

     ( ) .i

odd

d v Even No=  

In LHS each ( )id v  is odd number and its summation is even number. 

Therefore number terms in LHS must be even number.  i.e.  the number of odd degree vertices is  

even. 

 

Example:  Show that there does not exist a graph with 5 vertices with degrees 1, 3, 4, 2, 3 respectively. 

 

We know that in any graph the number of odd degree vertices are even.  But in the given graph three odd 

degree vertices are given.  Hence a graph with these degree sequence does not exist.  

 

Example:  Is there a simple graph with degree sequence 1, 1, 3, 3, 3, 4, 6, 7? 
 

Sum of degrees = 28 which is even.  Hence a graph exists with this degree sequence. 
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But a simple graph contains no self loop or parallel edges.  Plot the eight vertices  namely 
, , , , , , ,a b c d e f g h . 

The vertex, say a , with degree 7 is adjacent to all other vertices in which two vertices are of  
degree 1. 
These pendent vertices may not be adjacent to any other vertices.  The remaining vertices are only  

5.  Therefore a vertex with degree 6 is not possible and hence a simple graph is not possible. 
 
Note:  But a multigraph is possible with this degree sequence. 

 

Definition:  A graph in which the degree of all vertices are same is called regular graph. 

 

  
 

Regular Graph with  

3 vertices of degree 2 

Regular Graph with  

4 vertices of degree 2 

Regular Graph with  

4 vertices of degree 3 

 

Example:  How many vertices does a regular graph of degree four with 10 edges have? 

  Let n  be the number of vertices. 

  Since each vertex has degree 4, sum of degrees is 4 n  

  But sum of degrees is equal to two times number of edges 

  Therefore 4 2 20n =   

                                                  10n =  

  

Definition:  A graph with n  vertices is said to be complete graph, if the degree of each vertices is 1n− .  It 

is denoted by nK .  Here all pair of vertices are adjacent. 

   

3K  
4K  5K  

 

Do you know?:  Can a complete graph be a regular graph ? 

 

Definition:  If the vertices set of a graph G  can be partitioned into two disjoint sets such that 1 2V V V =  

and each edge has one end vertex in 1V  and another at 2V  is called a bipartite graph. 
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Example:  Is the given graph bipartite? 

 

The Graph is bipartite because its vertex set is the 

union of two disjoint sets,  1 , ,V a b d= and 

 2 , , ,V c e f g= , and each edge has one end vertex 

in
1V  and the other end vertex in 

2V . 

   

Do you know? :  For which values of n  are these graphs bipartite?   a) nK      b) nC       c) nW  

 

In a bipartite graph if all the vertices of 
1V  is adjacent to all the vertices of 

2V , it is said to be complete 

bipartite.  It is denoted by ,m nK . 

 

   
Bipartite Graph Complete Bipartite Graph 2,3K  Complete Bipartite Graph 3,3K  

 

Note:  Complete bipartite graph 2,3K  have 23=6 edges. 

Example:  Prove that maximum number of edges in a bipartite graph with n  vertices is  
2

4

n
. 

A bipartite graph with 1 1V n=  and 2 2V n=  vertices set have 1 2n n  edges subject to 1 2n n n+ = . 

Therefore maximum number of edges is attained when number of vertices 1 2
2

n
n n= = (if n  is even) 

Therefore maximum number of edges of a bipartite graph with  n  vertices is  
2

2 2 4

n n n
 = . 

 

Note:  If n  is odd,  then 1 2

1 1
,

2 2

n n
n n

− +
= =  

Therefore maximum number of edges of a bipartite graph with  n  vertices is  
2 21 1 1

2 2 4 4

n n n n− + −
 =  . 

Therefore maximum number of edges in a bipartite graph with n  vertices is  
2

4

n
  

 

Definition:  Alternating sequence of vertices and edges starting and ending with vertices such that no 

edge or vertex repeated more than once except the starting vertex is called a cycle. It is denoted by nC . 
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Alternatively,  A cycle nC , 3n  , consists of n  vertices 1 2 3 1, , ,....... ,n nv v v v v−  and edges 

( ) ( ) ( ) ( ) ( )1 2 2 3 3 4 1 1, , , , , ,......., , , ,n n nv v v v v v v v v v− . 

 

   

3C  
4C  5C  

 

Definition:  A wheel graph nW   contain an additional vertex to the cycle nC  and  connect this new vertex 

to the n  vertices of nC  by a new edges.  

   

3W  
4W  5W  

 

Do you know? :  For which values of ,m n  are these graphs regular?   a) nK      b) nC       c) nW      d) ,m nK  

  

Definition:  A graph H  is said to be a subgraph of a graph G  if all the vertices and all the edges of H  

are in G ,  and each edge of H  has the same end vertices in H  as in G .  It is denoted by H G . 

Note: 

• Every graph is its own subgraph. 

• A single vertex in a graph G  is a subgraph of G . 

• A single edge in G , together with its end vertices, is also a subgraph of G . 

 

 
                                           Subgraph H  of  G                                               Graph G  

        

A sub graph can be obtained by deleting a vertex  

from the given graph.  Deletion of a vertex means 

the vertex and all edges incident on it. 

A sub graph can be obtained by deleting an edge  

from the given graph.  Deletion of an edge means 

the edge only and not the end vertices. 
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Subgraph obtained by deleting an 

vertex e  

 

 

Given Graph  

 
Subgraph obtained by deleting an 

edge  ( , )b e  

 

Try this:  Draw the complete graph 5K  with vertices A, B, C, D, E.  Draw all complete sub graph of 5K  with  

4 vertices. 
(By deleting each vertices one by one, we get a complete subgraph with 4 vertices) 

 

Definition:   Let  1 1 1,G V E=  and   2 2 2,G V E=  be any two graphs.  The union of two graphs is a graph 

G whose vertex set is 1 2V V V=   and edge set is 1 2E E E=  .   

 

 
 

 

 1 1 1,G V E=   2 2 2,G V E=  1 2G G G=   

 

 

Definition:   Let  1 1 1,G V E=  and   2 2 2,G V E=  be any two graphs.   The intersection of two graphs is a 

graph G  whose vertex is 1 2V V V=   and edge is 1 2E E E=  .   

 

   

 1 1 1,G V E=   2 2 2,G V E=  1 2G G G=   
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Matrix Representation of Graphs: 
 

Adjacency Matrix  :  Suppose  ,G V E=  is a simple graph where   1 2 3 1, , ,....... ,n nV v v v v v−= .  The 

adjacency matrix ( ) ijA G a =     is an n n  matrix, where 

                          
( )1, ,

0,

ij i ja if v v is and edge of G

otherwise

=

=
 

Note:  For multigraph/pseudograph the ( , )thi j  entry of this matrix equals the number of edges that are 

associated to ( ),i jv v . 

Example:  Use an adjacency matrix to represent the simple graphs shown here: 

 

  

 We order the vertices as , , ,a b c d . The adjacency matrix representing the graph G  and H  is  

0 0 1 0

0 0 1 1
( )

1 1 0 1

0 1 1 0

a b c d

a

b
A G

c

d

 
 
 =
 
  
 

       and     

0 0 0 0

0 0 1 1
( )

0 1 0 1

0 1 1 0

a b c d

a

b
A H

c

d

 
 
 =
 
  
 

 

 

 

Example:  Use an adjacency matrix to represent 

the pseudo graph shown here: 

 

 

We order the vertices as , , ,a b c d . The adjacency  

matrix representing the pseudograph G  is 

0 3 0 2

3 0 1 1
( )

0 1 1 2

2 1 2 0

a b c d

a

b
A G

c

d

 
 
 =
 
  
 

 

 

Some Observations of Adjacent Matrix 
 

• Adjacency matrix of a graph is based on the ordering chosen for the vertices. Hence, there are n! 

different adjacency matrices for a graph with n vertices.  
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• The adjacency matrix of a graph is symmetric 

• Entry 1 in the ( , )thi i  position represents the loop at the vertex iv . 

• Sum of elements of a row or column represents the degree of the vertex. 

• Two graphs G  and H  are isomorphic if and only if their adjacency matrices ( )A G  and ( )A H  are 

related as ( )1P A G P− =  ( )A H  where P  is a permutation matrix. 

(A matrix whose rows are the rows of the unit matrix, but not necessarily in the same order, is 

called a permutation matrix) 

Example:  Draw a graph with the adjacency matrix 

0 1 0 1 0

1 0 0 1 1

0 0 0 1 1

1 1 1 0 1

0 1 1 1 0

A

 
 
 
 =
 
 
 
 

 

 

Let , , , ,a b c d e  be the ordering of vertices.  Then the edges are given 

by the pairs of vertices ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ),a b a d b a b d b e c d c e  

( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )d a d b d c d e e b e c e d .   
 

Because of symmetry, removing the repetitions, we have 

( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )a b a d b d b e c d c e d e  

The graph is given here. 

 
 

 

Theorem:  If A  is the adjacency matrix of a graph G  with ( )  1 2, , ..., nV G v v v= , prove that for any  1n  ,  

the ( , )thi j  entry of nA  is the number of i jv v−  walks of length n  in G .  

 

Proof:  We prove this by mathematical induction. 

Suppose G  is a graph with vertices 1 2, , ..., nv v v  and A  is the adjacency matrix of G .  

Let ( )P n  :  For all integers , 1,2,3,.....,i j n= ,  the ( , )thi j  entry of nA  is the number of  walks of 

length n  from i jv to v  in G . 

To prove (1)P  is true: 

 The ( , )thi j  entry of 1A = the ( , )thi j  entry of A  

                                                         =  number of edges connecting i jv to v    (by definition of adjacency matrix)   

                                                         =  number of walks of length 1 from i jv to v  (walk of length 1 is an edge) 

Assume that ( )P k  is true: 
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  The ( , )thi j  entry of kA =  number of walks of length k  from i jv to v  

To prove ( 1)P k +  is true: 

Let ( )ijA a=  and ( )k

ijA b= .  Also 1 .k kA A A+ =  

 ( , )thi j  entry of 1kA + = ( )thi row of A  ( )thj  column of kA  

                                                       1 1 2 2. . ....... .i j i j i n n ja b a b a b= + + +  

Here 1ia  is the number of edges from 1iv to v   and  1 jb   is the number of walks of length k  from 

1 jv to v . 

 combining these two edge and walk, we get 

1 1.i ja b =  the number of walks of length 1k +  from i jv to v  with 1v  as its second vertex. 

In general, 1.im ma b =  the number of walks of length 1k +  from i jv to v  with mv  as its second 

vertex. 

 ( , )thi j  entry of 1kA + =  the number of walks of length 1k +  from i jv to v . 

Hence by induction hypothesis, ( , )thi j  entry of nA =  the number of walks of length n  from 

i jv to v . 

 

Example:  How many walks of length four are there from a to d  in the following simple graph G . 

 
 

The adjacency matrix of the given graph is 

0 1 1 0

1 0 0 1
( )

1 0 0 1

0 1 1 0

a b c d

a

b
A G

c

d

 
 
 =
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 2

0 1 1 0 0 1 1 0 2 0 0 2

1 0 0 1 1 0 0 1 0 2 2 0

1 0 0 1 1 0 0 1 0 2 2 0

0 1 1 0 0 1 1 0 2 0 0 2

A A A

     
     
     =  =  =
     
     
     

 

 

 4 2 2

2 0 0 2 2 0 0 2 8 0 0 8

0 2 2 0 0 2 2 0 0 8 8 0

0 2 2 0 0 2 2 0 0 8 8 0

2 0 0 2 2 0 0 2 8 0 0 8

A A A

    
    
    =  =  =
    
    
      

 

Hence there are 8 walks of length four from a to d .  They are 

(1) (2) (3) (4)

(5) (6) (7) (8)

a b a b d a b a c d a b d b d a b d c d

a c a b d a c a c d a c d b d a c d c d
 

 

Incidence Matrix  :  Suppose  ,G V E=  is a simple graph where   1 2 3 1, , ,....... ,m mE e e e e e−=  and 

 1 2 3 1, , ,....... ,n nV v v v v v−= .  The Incidence matrix ( ) ijI G a =     is an n m  matrix, where 

                          
1,

0,

ij j ia if edge e is incident with v

otherwise

=

=
 

 

Example:  Use an incidence matrix to represent the graphs shown here: 

 
 

 

We order the vertices 1 2 3 4 5, , , ,v v v v v  row 

wise and edges , , , , ,a b c d e f  column wise. 

The incidence matrix representing the graph 

is 

1

2

3

4

5

1 0 1 0 0 0

1 0 0 1 0 0

( ) 0 1 1 0 1 0

0 1 0 1 0 1

0 0 0 0 1 1

a b c d e f

v

v

I G v

v

v

 
 
 
 =
 
 
 
 

 

We order the vertices 1 2 3 4 5, , , ,v v v v v  row 

wise and edges , , , , , , ,a b c d e f g h  column 

wise. The incidence matrix representing the 

graph is 

1

2

3

4

5

1 0 1 0 0 0 1 0

1 0 0 1 0 0 1 0

( ) 0 1 1 0 1 0 0 0

0 1 0 1 0 1 0 0

0 0 0 0 1 1 0 1

a b c d e f g h

v

v

I G v

v

v

 
 
 
 =
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Some Observations of Incidence Matrix 

• Since every edge is incident on exactly two vertices, each column of ( )I G  has exactly two l′s. 

• Only one 1’s in a column represent a loop 

• The number of l′s in each row equals the degree of the corresponding vertex(for simple graph) 

• A row with all 0′s represents an isolated vertex 

• Parallel edges in a graph produce identical columns in its incidence matrix 

• Permutation of any two rows or columns in an incidence matrix simply corresponds to relabelling 

the vertices and edges of the same graph 

• Two graphs G  and H   are isomorphic if and only if their incidence matrices ( )I G  and ( )I H  differ 

only by permutations of rows and columns 
 

Example:  Using the incidence matrix of a graph G , show that the sum of the degrees of vertices of a 

graph G  is equal to twice the number of edges of G . 
 

Let G  be a simple graph and ( )I G  represents its incidence matrix.  We know that the number of l′s in 

each row equals the degree of the corresponding vertex.  Therefore total degrees of all vertices is sum of 

all 1’s in the incidence matrix. 

By definition of incidence matrix, each column, representing an edge,  contains exactly two 1’s.  
 

 Therefore Total degrees of  G = (Total number of 1’s in incidence matrix) 

                                                           = 2 ( number of columns) 

                                                           = 2 (edges) 

 

Traversing a graph 
 

Definition:  A walk of a graph  ,G V E=  is a finite alternating sequence of vertices and edges 

 1 1 2 2 1 1... k k k kW v e v e e v e v− −= , starting and ending with vertices such that each edge is incident with the 

vertices preceding and succeeding it. 
 

Note:   

• In a walk vertices may be repeated but not edges. 

• If starting and vertices are same vertex, it is called closed walk, otherwise, it is called open walk. 

• A open walk is said to be a path, if the edges and vertices are distinct. 

• The number of edges in a path is called the length of a path. 

• A closed walk in which no vertex (except the initial and the final vertex) appears more than once is 

called a circuit. 

• A circuit is a closed non intersecting walk 

 

 

Open Walk  1 6 3 5 3 4 4 7 2W v e v e v e v e v=  

Closed Walk  1 6 3 5 3 4 4 7 2 1 1W v e v e v e v e v e v=  
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Open Path  1 6 3 4 4 7 2P v e v e v e v=  

Closed Path/Circuit  1 6 3 4 4 7 2 2 1P v e v e v e v e v=  

Can we say that a closed walk is a circuit? 

 

Definition:  A vertex u  of a graph G  is said to be reachable from a vertex v ,  if there is a path from u  to 

v .  A graph G  is said to be connected if there is a path from every pair of vertices of G .  Otherwise G  is 

said to be disconnected. 

 

Note:  A disconnected graph comprised of components. 

                                    

Disconnected Graph as there is no path between a  and  b . Connected graph 

 

Theorem:  Prove that a graph G  is disconnected if and only if its vertex set V  can be partitioned into 

two non empty, disjoint subsets U  and W  such that there exists no edge in G  whose one end vertex is in 

subset U  and other in subset W . 

 

Proof:  Suppose that vertex set V  of a graph G  can be partitioned into two non empty disjoint subsets U  

and W  as stated.   Consider two arbitrary vertices ' ' & ' 'a b  of G  such that a U  and b W .  No path 

can exists between vertices ' ' & ' 'a b .   Otherwise there would be at least one edge whose one end vertex 

be in U  and the other in W .   Hence if partition exists, G  is  disconnected. 

              

Conversely, let G be a disconnected graph.  Consider a vertex ' 'a  in G .  Let U  be the set of all vertices 

that are joined by paths to ' 'a .  Since G  is disconnected, U  does not includes all the vertices of G .  The 

remaining vertices will form a set W .   No vertices in U  is joined to any vertex in W  by an edge.  Hence 

the partition exists. 

Theorem:  Prove that the maximum number of edges in a simple graph with n  vertices is 
( )1

2

n n−
.  

Proof:  We prove this by induction on number of vertices of a graph.  Let  
( )1

( ) :
2

n n
P n

−
 

Let  1n = .  Then the graph is isolated vertex and hence it has no edges.  Also 
( )1 1 1

(1) : 0
2

P
−

=  edges 

Let  2n = .  Then the simple graph has one edge only.  Also 
( )2 2 1

(2) : 1
2

P
−

=  edge. 
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Assume that the statement is true for n k=  vertices.  Then the graph has 
( )1

( ) : 1
2

k k
P k

−
=  edges. 

Let the graph has 1n k= +  vertices.  We have to prove 
( )( )1 ( 1) 1

( 1) :
2

k k
P k

+ + −
+  

Now introduce the new vertex to the previous graph with k  vertices and join it with new edges to the 

already existing k  vertices i.e. k  edges.  

Therefore total number of edges is  
( )1

2

k k
k

−
= +  

     
( )1 2

2

k k k− +
=  

     
2

2

k k+
=  

     
( )1

2

k k +
=  

     
( )( )1 ( 1) 1

2

k k+ + −
=  

Hence by induction, the statement is true for n  vertices.  i.e.  
( )1

( ) :
2

n n
P n

−
 

Alternate Proof: 
 

Let G be a simple graph with n  vertices.  By hand shaking theorem, ( )deg 2iv e= , where e  is number of 

edges.  

  ( ) ( ) ( )1 2deg deg ..... deg 2nv v v e+ + + =  

  ( ) ( ) ( )1 1 ..... 1 2n n n e− + − + + − =  {maximum edges possible for complete graph} 

 ( )1 2n n e− =   

 
( )1

2

n n
e

−
=   

 

Theorem:  Prove that a simple graph with n  vertices and k  components can have at most 

( )( )1

2

n k n k− − +
 edges.  

 

Proof:  Let G  be a simple graph with n  vertices and k  components. 

 Let 1 2 3, , ,........, kn n n n  be the number of vertices of  k  components of the graph G . 

 Therefore 1 2 3 ........ kn n n n n+ + + + = . 
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Since G  is simple, each component is simple.  We know that a simple graph with n  vertices can 

have maximum 
( )1

2

n n−
 edges. 

 Therefore total number of edges of  G = Sum of maximum of number of edges of each components 

                                                                                    
( ) ( ) ( )1 1 2 21 1 1

.....
2 2 2

k kn n n n n n− − −
= + + +  

                                                                                          
( )

1

1

2

k
i i

i

n n

=

−
=  

                                                                                          ( )2

1

1

2

k

i i

i

n n
=

= −  

                                                                                          2

1 1

1 1

2 2

k k

i i

i i

n n
= =

= −   

                                                                                          2

1

1 1
........(1)

2 2

k

i

i

n n
=

= −  

 Consider   ( )
1 1 1

1 1
k k k

i i

i i i

n n
= = =

− = −    

                                     ( )
1

1
k

i

i

n n k
=

− = −  

 Squaring on both sides 

                                     ( ) ( ) ( ) ( )
2 2

1 21 1 ..... 1kn n n n k− + − + + − = −    

                                        ( ) ( ) ( )
2 2 2 2 2

1 21 1 ..... 1 2kn n n positive terms n k nk − + − + + − + = + −
 

 

                                        ( ) ( ) ( )2 2 2 2 2

1 1 2 21 2 1 2 ..... 1 2 2k kn n n n n n n k nk + − + + − + + + −  + −
 

 

                                         2 2 2

1 1

2 2
k k

i i

i i

n n k n k nk
= =

− +  + −   

                                         2 2 2

1

2 2
k

i

i

n n k n k nk
=

− +  + −  

   2 2 2

1

2 2
k

i

i

n n k nk n k
=

 + − + −  

   2 2 2

1

2 2 ...........(2)
k

i

i

n n k nk n k
=

 + − + −  

 Substitute (2)  in  (1)  
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 Total number of edges of  G  ( )2 21 1
2 2

2 2
n k nk n k n+ − + − −  

                                                                         2 21
2 2

2
n k nk n k n  + − + − −   

                                                                         ( )
21

2
n k n k  − + −

 
 

                                                                         ( )( )
1

1
2

n k n k − − +  

Example:  Show that a simple graph G  with n  vertices is connected if it has more than 
( 1)( 2)

2

n n− −
  

edges. 

 Let G  be a simple graph with n  vertices and E  number of edges. 

 Given that 
( 1)( 2)

2

n n
E

− −
  

 Claim:  To prove G  is connected. 

 Suppose G  is disconnected with 2 components. 

 Therefore by previous theorem, 
( )( )2 2 1

2

n n
E

− − +
  

                                                                             
( )( )1 2

2

n n
E

− −
  

 Thus if G  is disconnected, then 
( )( )1 2

2

n n
E

− −
 . 

 Therefore the contra positive statement is if  
( )( )1 2

2

n n
E

− −
   then G  is connected. 

Theorem:  If G  is a simple graph with 
( )

( )
2

V G
G   then G  is connected. 

Proof:  Let G  be a simple graph with number of vertices is ( )V G n=  and ( )G =minimum degree of G . 

 Let degree of all vertices of G  is .
2

n
   i.e.  ( )G .

2

n
  

 Claim:  G  is connected graph 
  

Let  ,u v  be any two vertices in  G .  Let X  be the set of all vertices which are adjacent to u  and  Y

be the set of vertices which are adjacent to v .  Then ( )d u X=   and  ( )d v Y= . 

Therefore number of vertices of union of X and Y  is  2X Y n  −  because ( ),u v X Y  . 
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Then  ( ) ( )
2

n
X d u G

 
=    

 
  and  ( ) ( )

2

n
Y d v G

 
=    

 
 

 Therefore  1
2 2

n n
X Y n

   
+  +  −   

   
 

 Consider  

( 1) ( 2) 1

1

X Y X Y X Y

X Y X Y X Y

n n

X Y

 +  = +

 = + − 

 − − − =

 

 

 

Since X Y   ,  choose a vertex ( )w X Y  .  Then uw  and wv  are edges, then uwv  is an u v−  path in 

G . 

 

Thus for every pair of distinct vertices in G  there is a path between them,  Hence G  is connected. 

 

Theorem:  Let G  be a graph (connected or disconnected) with exactly two vertices has odd degree.  

Then prove that there is a path between those two vertices. 

 

Proof:  Let G  be a graph with all even vertices except vertices u  and v , which are odd.  We know that in 

any graph, the number of odd degree vertices are even.  Since the given graph has exactly two odd degree 

vertices &u v , they belong to the same component.  Hence there must be a path between  u  and v . 
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ISOMORPHISM 
 

Two graphs 
1G  and 

2G  are said to isomorphic if there exists a one-to-one correspondence between their 

vertices, edges which preserves the incidence relationship.  

i.e. the graphs must have 

i. same number of edges 

ii. same number of vertices 

iii. incidence relationship. 

Example 1:   Establish an isomorphism for the following graphs. 

  

 Let us compare the nature of both the graphs: 

 

Description 
1G  2G  

Number of vertices 3 3 

Number of edges 6 6 

Vertex with degree 4 vertices with degree 3 4 vertices with degree 3 

Circuits with length 4 circuits with length 3 

3 circuits with length 4 

4 circuits with length 3 

3 circuits with length 4 

Mapping ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 2 3 1 3 2

2 1 2 2 4 1 4 2

f v in G f u in G f v in G f u in G

f v in G f u in G f v in G f u in G

= =

= =
 

In both the graphs, since all vertices are of same degree, adjacency relationship is preserved.  

Hence both the graphs are isomorphic 

 

Example 2:   Establish the isomorphism of the following pairs of graphs. 
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 Let us compare the nature of both the graphs: 

Description G  H  

Number of vertices 6 6 

Number of edges 5 5 

Vertex with degree 2 vertices with degree 2 

3 vertices with degree 1 

1 vertex with degree 3 

2 vertices with degree 2 

3 vertices with degree 1 

1 vertex with degree 3 

Circuits with length No circuit exists No circuit exists 

Even though the above data are common in both the graphs, they are not isomorphic as the  

adjacency relationship is not preserved.  Consider the vertices 3v  in G  and 
4u  in H .  Both are of 

degree 3.  Hence they are mapped.  But the adjacent vertices of 3v  having the degrees 2, 2, 1.  But 

the adjacent vertices of 4u  having the degrees 1, 1, 2.   i.e. the adjacency relationship is not 

preserved.  Hence both the graphs are not isomorphic. 

 

Example 3:   Check whether the following graphs are isomorphic or not. 

 

Let us compare the nature of both the graphs: 

Description G  H  

Number of vertices 6 6 

Number of edges 8 8 

Vertex with degree 2 vertices with degree 2 2 vertices with degree 2 
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4 vertices with degree 3 4 vertices with degree 3 

Circuits of length 2 circuits of length 3 

1 circuit of length 4 

1 circuit of length 6 

2 circuits of length 5 

0 circuit of length 3 

5 circuits of length 4 

3 circuit of length 6 

0 circuits of length 5 

Considering the above facts about the circuits, we conclude that both the graphs are not 

isomorphic. 

 

Example 4:  Are the simple graphs with the following adjacency matrices isomorphic? 

( ) ( )1 2

0 0 1 0 1 1

0 0 1 1 0 0

1 1 0 1 0 0

A G and A G

   
   

= =   
   
   

 

 

 The degree sequence of both the matrices are 1, 1, 2 and 2, 1, 1.  Therefore 

 

Consider  

( )

( )

1

1 3

1 3

2

0 0 1

0 0 1

1 1 0

1 0 0

1 0 0 int

0 1 1

0 1 1

1 0 0 int

1 0 0

A G

erchanging C C

erchanging R R

A G

 
 

=  
 
 

 
 

=  
 
 

 
 

=  
 
 

=

 

 Hence 1G  and 2G  are isomorphic. 
 

 

Example 5:  Establish the isomorphism of the following pairs of graphs, by considering their adjacency 
matrices. 
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Example 6:  Are the simple graphs with the following adjacency matrices isomorphic? 

( ) ( )1 2

1 1 0 0 0 0 1 0 0 1

1 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 0 1 0

0 1 1 1 0 1 0 1 0 1

A G and A G

   
   
   = =
   
      
   

 

 

 The degree sequence of both the matrices are 2, 3, 2,  3 and 2, 3, 2,  3.  Therefore 

Consider  

( )1

2 5

1 2

1 4

1 1 0 0 0

1 0 1 0 1

0 0 0 1 1

0 1 1 1 0

1 0 0 0 1

1 1 1 0 0
int

0 1 0 1 0

0 0 1 1 1

0 1 0 0 1

1 1 1 0 0
int

1 0 0 1 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 0
int

1 0 0 1 0

1 0 1 0 1

A G

erchanging C C

erchanging C C

erchanging C C

A G

 
 
 =
 
  
 

 
 
 = 
 
  
 

 
 
 = 
 
  
 

 
 
 = 
 
  
 

= ( )2

 

 Hence 1G  and 2G  are isomorphic. 

 
Example 7:  The adjacency matrices of two pairs of graph as given below:  Examine the isomorphism of G 
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                         and H by finding a permutation matrix. 

0 0 1 0 1 1

0 0 1 , 1 0 0

1 1 0 1 0 0

G HA A

   
   

= =
   
      

 

 
Solution:  Let 1 2 3, ,v v v  be the vertices of G  and  1 2 3, ,u u u  be the vertices of H .   

Considering the degree of vertices of G  and H , permutation matrix P  can be obtained as follows: 

Since ( ) ( )1 2deg degv u= , the first row of 3I  can be taken as second row of P . 

Also ( ) ( )2 3deg degv u= , the second row of 3I  can be taken as third row of P . 

And ( ) ( )3 1deg degv u= , the third row of 3I  can be taken as first row of P . 

Hence 

0 0 1

1 0 0

0 1 0

P

 
 

=  
 
 

 

 Consider 

 

0 0 1 0 0 1 0 1 0

1 0 0 0 0 1 0 0 1

0 1 0 1 1 0 1 0 0

1 1 0 0 1 0

0 0 1 0 0 1

0 0 1 1 0 0

0 1 1

1 0 0

1 0 0

TPGP

H

   
   

=    
   
   

  
  

=   
  
  

 
 

=  
 
 

=

 

 Therefore the graphs G  and H  are isomorphic. 
 

Example 8:  Are the simple graphs with the following adjacency matrices isomorphic? 

( ) ( )1 2

0 1 0 1 0 1 1 1

1 0 0 1 1 0 0 1

0 0 0 1 1 0 0 1

1 1 1 0 1 1 1 0

A G and A G

   
   
   = =
   
      
   

 

 

The degree sequence of both the matrices are 2, 2, 1,  3 and 3, 2, 2,  3 and hence sum of degrees are 

not equal.  Therefore given graphs 1G  and 2G  are not isomorphic 

 

Definition:  A property P  is called an invariant for graph isomorphism if, and only if, given any 

graphs 1G  and 2G , if 1G  has property P and 2G  is isomorphic to 1G , then 2G  has property P . 
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The following properties is an invariant for graph isomorphism, where ,n m  and k  are all nonnegative 

integers: 

1. has n  vertices    2. has m  edges 

3. has a vertex of degree k    4. has m  vertices of degree k  

5. has m  circuits of length k   6. is connected 

7. has an Euler circuit   8. has a Hamiltonian circuit. 

 

Suppose 
1G  and 

2G  are two graphs which are isomorphic.  Then there exists a 1 1−  function f  between 

their vertex and edge set. Hence number of vertices and edges of both the graphs are equal.   

 

By definition of isomorphism, the mapping f  preserves incidence relationship so that both the graphs 

have equal number of vertices with a given degree.  This can be verified  by the adjacency matrix of the 

respective graphs.  If ( ) ( )1 2A G A G= it follows that f  preserves edges and hence degree sequence and 

connectedness as well. 

 

Refer example 3 for counter example for invariant property of circuit of a particular length. 
 

Theorem:  Show that isomorphism of simple graphs is an equivalence relation. 

Proof:  Let S  be set of graphs and let R  be the relation of graph isomorphism on S .  Then R  is an 

equivalence relation on S . 

 

1.  Reflexive 

 

Given any graph G  in S ,  define a graph isomorphism from G  to G  by using the identity functions on 
the set of vertices and on the set of edges of G .  Hence isomorphism is reflexive. 
 

 Mapping:  Define ( ) ( ):f V G V G→  by  ( )f v v= and ( ) ( ):g E G E G→  by ( )g e e= .   

 

 2.  Symmetric 

 

Let 1G , 2G  S  such that 1G  is isomorphic to 2G .  Then there exists a one-to-one correspondence f  from  

1G  to 2G  that preserves adjacency and non adjacency.  From this g  is a one-to-one correspondence from 

2G  to 1G  that preserves adjacency and non adjacency.  Hence isomorphism is symmetric. 
 

Mapping for vertices: ( ) ( )1 2:f V G V G→  by ( )f v w=  and ( ) ( )2 1:g V G V G→  then 1( ) ( )g w f w−= .  

Therefore 2G  is isomorphic to 1G . 
 

3.  Transitive 

 

Let 1G , 2G , 3G  S  such that 1G  is isomorphic to 2G  and 2G  is isomorphic to 3G .  Then there exists a one-

to-one correspondence f  from  1G  to 2G  and g  from  2G  to 3G  that preserves adjacency and non 

adjacency.  It follows that g f  is a one-to-one correspondence from 1G  to 3G  that preserves adjacency 

and non adjacency.  Hence isomorphism is transitive. 
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Mapping for vertices: ( ) ( )1 2:f V G V G→ , ( ) ( )2 3:g V G V G→  by ( ) , ( )f u v g v w= =  then 

( ) ( ) ( )1 3:g f V G V G→  defined by ( )  ( ) ( )g f u g f u w= = .  Therefore 
1G  is isomorphic to 3G . 

 

Definition:  Let G  be a simple graph and G is said to be complement of G , if vertices set of G  is same 

as G  and two vertices of G  is adjacent if they are not adjacent in G .  

 

Note:   

• Union of a graph and its complement is a complete graph i.e. nG G K =  

• If G  and G  are isomorphic, then G  is said to be self complement. 

 

 
G  

 
G  

 

 
G  

 

 

 
G  

 
G  

 
G  

 

 

Theorem:  Prove that the complement of a disconnected graph is connected. 

 

Proof:  Let G  be a disconnected graph and let G  be its complement.  Consider two vertices ,x y  in the 

complement.  If  &x y  are not adjacent in G , then they will be adjacent in G  and there exists a trivial   

x y− path.  If  &x y  are adjacent in G , then they must be in the same component.  Let z  be some vertex 
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in another component of G .   This means that the edges xz  and yz  were not in G .  This implies that they 

both must be edges in G .  This gives us the path x z y− − .  Therefore there exists a path between any two 

vertices and hence it is connected. 

 

Example:  If G  is a simple graph with 15 edges and G  has 13 edges, how many vertices does G  have? 

 We know that G  and G  have same number of vertices, say n . 

 Union of G  and G  have 15 + 13 = 28 edges. 

 But Union of G  and G  is a complete graph with 
( 1)

2

n n −
 edges 

 Therefore 
( 1)

28
2

n n −
=  

          

( 1) 56

8 7 56

8

n n

n

− =

 =

 =

 

 

Do you know?:  If the degree sequence of the simple graph G  is 4, 3, 3, 2, 2, what is the degree sequence 

of G ? 

 

Theorem:  If G  is self-complementary graph with n  vertices, then G  has 0n   (or) 1(mod 4) vertices. 

 

Proof:  We know that union of  a graph and its complementary graph gives a complete graph which has 

( 1)

2

n n −
 edges.  Therefore n  or ( 1)n −  must be even. 

Also we know that a graph and its self complementary graph has equal number of vertices and edges. 

 

Since G  is self-complementary graph with n  vertices, then G  has 
( 1)

4

n n −
 edges. 

Therefore either 4 divides n  or 4 divides  ( 1)n − . 
 

Therefore, 0(mod 4)n    or  1(mod 4)n   

 

Example:  Prove that 5C  is the only cycle graph isomorphic to its complement.  

 
Solution:  We know that a cycle graph of n  vertices has n  edges. 
 

 Also the complete graph of n  vertices has 
( 1)

2

n n −
 edges. 

 Therefore if  nC  is isomorphic to its complement, its complement has 
( 1)

4

n n −
 edges. 
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 Hence 
( 1)

4

n n
n

−
= .  i.e.  1 4.n− =    i.e.  5n =  

 

Example:  Show that the graph G  is self-

complementary. 

 

The complementary of the graph is  G . 

 

Let us establish the isomorphism between the graphs: 

Description G  G  

Number of vertices 4 4 

Number of edges 3 3 

Vertex with degree 2 vertices with degree 1 

2 vertices with degree 2 

2 vertices with degree 1 

2 vertices with degree 2 

Circuits of length No circuit exists No circuit exists 

Mapping ( ) ( )

( ) ( )

f a in G f d in G

f b in G f c in G

=

=
          

( ) ( )

( ) ( )

f c in G f a in G

f d in G f b in G

=

=
 

Considering the above facts, we conclude that both the graphs are isomorphic.  Hence the given 

graph G  is self complementary. 

. 

Example:  Show that the graph G  is self-

complementary. 

 

The complementary of the graph is  G . 

 

 

Let us establish the isomorphism between the graphs: 

Description G  G  
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Number of vertices 5 5 

Number of edges 5 5 

Vertex with degree 5 vertices with degree 2 5 vertices with degree 2 

Circuits of length One circuit of length 5 One circuit of length 5 

Mapping ( ) ( ) ( ) ( )f y in G f a in G f v in G f e in G= =           

( ) ( ) ( ) ( ) ( ) ( )f x in G f d in G f w in G f b in G f u in G f c in G= = =  

Considering the above facts, we conclude that both the graphs are isomorphic.  Hence the given 

graph G  is self complementary. 
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Definition:  If some closed walk in a graph contains all the edges of the graph, then the walk is called an 

Euler line and the graph an Euler graph. 

 

Closed walk:   , , , , , , , ,a c d f e c b f a  

 

State the necessary and sufficient conditions for the existence of an Eulerian path in a connected 
graph. 

 

A connected graph has an Euler path but not an Euler circuit if and only if it has exactly two vertices of 

odd degree 

 

 a  and d  are two vertices with odd degree. 

 

Euler path is a b d a c d− − − − −  

 

 

Necessary and sufficient condition for Euler graph:  A connected graph G  is an Euler graph if and 

only if all vertices of G  is of even degree. 

Proof:  Assume that  ,G V E=  be an Euler Graph.  We have to prove all vertices in V  are of even degree. 

Since the graph is Euler, it has Euler circuit C  with initial vertex u .  Let v  be an arbitrary internal vertex 

of the circuit  C . 

 

Each time a vertex v  occurs as an internal vertex of C , then two of the edges incident with v , contributes 

2 degrees. 

Therefore ( )deg v =  2 (number of times v occur inside the Euler circuit C ) 

                                   = even degree. 

 

Since u is the initial vertex, ( )deg u =  2 2+  (number of times u occur inside the Euler circuit C ) 

                                                                    = even degree        
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              ∴ G  has all vertices of even degree. 

 

Conversely, assume that in   ,G V E= , all vertices of V  are of even degree.  We have to prove G  is 

Euler. 
 

Let us trace a walk start from a vertex u  and goes through all the edges without repeating any edge.  

Since every vertex is of even degree we can exit any vertex entered.  The tracing is continued as far as 

possible and do not stop except the starting vertex u .  If this tracing 
1g includes all edges of G , the graph 

is Euler.  Otherwise, remove the edges of  the closed walk just traced 
1g  from G  and obtain a sub graph 

say 
1G .   

 

Since the degrees of all vertices of G  and 1g  are even, the degree of all vertices of 1G  is also even.  Also 1G

must touch 
1g  at least at one vertex a , because the graph is connected.  Starting from a  we can construct 

a closed walk 2g  in 1G  starting and ending at a .  But this closed walk 2g  can be combined with 1g  to 

form a now closed walk starting and ending with u .  Obviously this combined closed walk has more 

edges than  1g .   

 
This process can be repeated until we obtain a closed walk that traverses all the edges of G. Thus G is an 
Euler graph. 
 
Try this:  Find an Euler path or Euler circuit, if it exists in each of the following three graphs.  If it does 
not exist, explain why? 

 
G2 

 

G3 

 
 
Definition :  A path in a graph G  is said to be Hamilton, if it passes through every vertices of G  exactly 
once. 

 

Definition :  A circuit in a graph G  is said to be Hamilton, if it passes through every vertices of G  exactly 

once.  A graph is said to be Hamiltonian if it contains a Hamilton circuit. 
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Hamilton Circuit:  a b c d e f g a− − − − − − − . 

 

Note:   

• A Hamiltonian circuit in a graph of n  vertices consists of exactly n  edges 

• The length of a Hamiltonian path (if it exists) in a connected graph of n  vertices is 1n−  

• In nK  there are 
( 1)!

2

n −
 Hamilton cycles (not edge disjoint). 

In a complete graph of n  vertices nK , every vertex is adjacent to every other vertex. 

Hence from any given vertex, there are  Hamilton ( 1)!n −  cycles.  Of these each pair of vertices 

which are adjacent both in the clock wise and anticlockwise direction, i.e. as 
j iv v  and  

i jv v .  Hence 

there are 
( 1)!

2

n −
 Hamilton cycles. 

 

Example:   Show that nK  has a Hamilton cycle for  3n  .  What is the maximum number of edge disjoint 

                      cycles possible in  nK ?  Obtain all the edge disjoint cycles in  7K . 

 

Proof:  We know that nK  contains nC  for all  3n  .  Therefore nK  has a Hamilton cycle for  3n  . 

Alternatively, in nK  there are edges between any two vertices.  Therefore a circuit can be formed by 

visiting vertices in any order we choose, as long as the path begins and ends at the same vertex and 
traverse each vertex exactly once.  This is a Hamilton circuit. 
 

 We know that each Hamilton cycle in nK  consists of n edges. 

  

But complete graph nK  has 
( 1)

2

n n −
 edges.  Therefore nK  can have at most 

1

2

n −
 number of edge 

disjoint Hamilton Cycles. 
 

 7K   and its edge disjoint Hamilton cycles. 
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7K  Edge Disjoint Hamilton Cycles of 7K  

 
 

ORE’S THEOREM :  If G  is a simple graph with n  vertices with 3n   such that ( ) ( )d u d v n+   for every 

pair of nonadjacent vertices u  and v  in G .  Then G  is Hamiltonian if and only if G uv+  is Hamiltonian. 
 
Proof:  If G  is Hamiltonian then obviously G uv+  is Hamiltonian.  
 
Conversely suppose G uv+  is Hamiltonian but G  is not. 

Let us prove this theorem by contradiction. 

Suppose that ( ) ( )d u d v n+   for all non adjacent vertices u , v  in G  for a non Hamilton circuit.  Let G  be 

such a maximal graph i.e. by adding an edge between u  and v  will result in a Hamilton circuit.  Let the 

Hamilton path be 1 2 3, , ,.......... nu x x x x v= =   as shown here. 

 

 
 
Define two sets  :uS x It is adjacent to u=   and   :vT x It is adjacent to v=  

Therefore deg( )S u=  and  deg( )T v= .  We claim that S T  =   and  1S T n  − . 

Thus if ix S T  , then the edges ( ), iu x  and ( ),ix v  should be in G  and the path 

1 2 1 1 1 1, ,... , , ,... , ,...,i i i n nu x x x x x x x x− + −=   will form a Hamiltonian circuit, which is a contradiction. 

 

Also, since the vertex 1u x=  is neither adjacent to u  nor adjacent to v , therefore 1x S T   and hence 

1S T n  − . 

Therefore ( ) ( ) 1d u d v S T S T n+ = + =   − , which is again a contradiction.  Hence G  is Hamiltonian. 
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Dirac’s Theorem:  If G  is connected simple graph with n  vertices  3n  , such that the degree of every 

vertex in  G  is at least 
2

n
, then prove that G  has Hamilton cycle. 

Proof:  Given that G  is connected simple graph with n  vertices, such that the degree of every vertex  is 

at least 
2

n
.    

Let u , v  in G  then ( )
2

n
d u   and ( )

2

n
d v    and hence  ( ) ( )

2 2

n n
d u d v n+  + = .  This is true for all pair of 

non adjacent vertices u  and v .  Therefore by Ore’s theorem, G  has Hamiltonian circuit. 
 
  

Example:   Consider a complete graph 5K .  Here 5n =  and degree of 

each vertex is 4.  Also ( )deg 4
2

n
G =   

 

Therefore by Dirac’s theorem, 5K  has Hamilton Circuit which is  

a b c d e a− − − − − . 
 

 
 
Direc’s theorem is not necessary condition to have a Hamilton circuit. 
 

Example:    

Consider the graph 5K .  Here 5n =  and degree of each vertex is 3 

except the deg( x )=2  and hence ( )deg G  is not 
2

n
 . 

But the graph is Hamiltonian even the Dirac’s theorem fails.  Because it 

satisfies the conditions of Ore’s theorem. 

For the vertices , ( ) ( ) 2 3 5 5x v d x d v n+ = + =  =  

For the vertices , ( ) ( ) 3 3 6 5u y d u d y n+ = + =  =  

For the vertices  , ( ) ( ) 2 3 5 5x z d x d z n+ = + =  =  

 
 

 

 

Hamilton Circuit:  x y v z u x− − − − − . 

 

Theorem:  Complete bipartite graph 
,m nK  with , 2m n   is Hamiltonian if and only if  m n= .   

 
Proof:  Let 

,m nK  is a complete bipartite graph 

which is Hamiltonian. 
 
Then the vertex set can be decomposed into two 

disjoint sets X  and Y  such that each edge in 
,m nK  

joins a vertex in X  to a vertex in Y . 

Conversely suppose 
,m nK  is a complete bipartite 

graph with m n= . 
 
Let the vertices sets are 

 1 2, , ...., nX x x x=  and  1 2, , ...., nY y y y=  

 
Consider a cycle  
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Since Hamilton circuit is a closed walk that 

traverses every vertices of the two sets exactly 

once alternatively.  This is possible only the sets X  

and Y have the same number of vertices  

i.e. 2m n=  . 

1 1 2 2 3 3 1 1 1, , , , , ,...... , , , ,n n n nx y x y x y x y x y x− −  which 

traverses all the vertices exactly once and hence it 

is Hamilton and the graph is said to be Hamiltonian 

 

The following table gives examples for some Euler and Hamilton related graphs: 

 

Types Example  

Euler Graph 

 

Hamilton Graph 

 

 

Euler but not Hamilton 

 

Types Example  

Hamilton but not Euler 
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Neither Euler nor Hamilton 

 

Both Euler and Hamilton 

 

Contains Hamilton Path but not 

Hamilton Circuit 

 

Contains Euler line but not Euler 

Circuit 
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EXERCISE 

 

1. What is the largest possible number of vertices in a graph with 35 edges and all vertices of degree at least 
three. 

2. Draw a graph with the adjacency matrix 

0 1 0 1 0

1 0 0 1 1

0 0 0 1 1

1 1 1 0 1

0 1 1 1 0

A

 
 
 
 =
 
 
 
 

 

3. When do we say two simple graphs are isomorphic?  Check whether the following two graphs are 
isomorphic or not.  Justify your answer. 

  

4. Write the adjacency matrix and incidence matrix of 22K . 

5. How many edges are there in a graph with 10 vertices each of degree 3? 

6. Give an example of self complementary graph. 

7. Draw a graph with 5 vertices A, B, C, D and E such that deg(A)=3, B is an odd vertex, deg(C)=2 and  

              D and E are adjacent. 

8. Show that there does not exist a graph with 5 vertices with degrees 1, 3, 4, 2, 3 respectively. 

9. Define isomorphism between two graphs.  Are the simple graphs with the adjacency matrices isomorphic? 

0 1 0 0 0 1 0 1 0 0 0 1

1 0 1 0 1 0 1 0 1 0 0 1

0 1 0 1 0 1 0 1 0 1 1 0
,

0 0 1 0 1 0 0 0 1 0 1 0

0 1 0 1 0 1 0 0 1 1 0 1

1 0 1 0 1 0 1 1 0 0 1 0
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10. Prove that a simple graph is bipartite if and only if it is possible to assign one of the two different colors to 
each vertex of the graph so that no two adjacent vertices are assigned the same color. 
 

11. How many paths of length four are there from a  to d  in the simple graph G  given below: 
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UNIT IV  −  ALGEBRAIC STRUCTURES 

========================================================================================== 

 

An algebraic system is a pair of non empty set together with one or more operations on the set.  It is also 

called an algebraic structure because the operations on the set define a structure of the elements of the set. 

 

Definition:  Let S  be a nonempty set.   A binary operation on S  is a function ∗ from S S  into S  and it is  

written as  a ∗b  for all a , b S   

 
Example:  Let N  be the set of natural numbers then the operation addition is a binary operation on N  

and is denoted by ( ),N +  . 

 
But subtraction (−) is not binary operation on N .  Because 3 − 4 = −1 N . 

 
Properties of Binary Operation 
 
Let S  be a nonempty set and ∗ be the binary operation on S . 
 
1.  Closure Property:  The set S  is closed under the binary operation ∗ if for all a , b S ,  a ∗b S  
 
     Example:  The set of natural numbers N is closed under addition but not closed under subtraction. 
 

2.  Associative Property:  If for all a , ,b c S ,  ( ) ( )* * * *a b c a b c= , then ∗ is associative on S . 

 
     Example:  Multiplication is associative on the set of real numbers R . 
 

3.  Commutative Property:  If for all a , b S ,  ( ) ( )* *a b b a= , then ∗ is commutative on S . 

   
     Example:  The operation matrix addition is commutative but matrix multiplication on the set of square  
     matrices in not commutative.  
 

4.  Distributive Property:  If for all a , ,b c S ,  ( ) ( ) ( )* * *a b c a b a c+ = +  or ( ) ( ) ( )* * *b c a b a c a+ = + , 

      then ∗ is distributive over addition on S . 
 

5.  Identity Property:  If for all a S  there exists e S , such that  ( ) ( )* *a e e a a= = , then e  is the   

     Identity element of the set with respect to the binary operation. 
 
     Example:  Zero is the additive identity on the set of integers and one is the multiplicative identity. 
 

6.  Inverse Property:  If for all a S  there exists 
1a S−  , such that  ( ) ( )1 1* *a a a a e− −= = , then 1a−  is the 
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      inverse element of  a  with respect to the binary operation. 
     Example:  Consider the rational numbers Q . Under addition, 0 is the identity element. 

                          Consider the set of natural numbers under the binary operation multiplication.  Now 
                           inverse element does not exist. 
 
7.  Idempotent Property:  A non empty set S  together with the binary operation ∗ is said to have  

      idempotent property if for a S ,  ( )*a a a= . 

 

     Example:  Find the idempotent elements of  1, 1, ,G i i= − −  under the binary operation  

     multiplication. 
 
 Here 1*1 1= .  Hence 1 is the idempotent element of G . 
 
8.  Cancellation Property:  A non empty set S  together with the binary operation ∗ is said to have  

      cancellation property if for a , ,b c S , then  ( ) ( )* *a b a c b c=  = (Left cancellation law)  and 

     ( ) ( )* *b a c a b c=  =  (Right cancellation law). 

      
     Example:  Addition on the set of integers  satisfies cancellation property.  But matrix multiplication 
     does not satisfy cancellation law. 
 

     Consider the matrices 
1 1 1 1 0 3 1 2

, , ,
0 0 0 1 1 5 0 0

A B C D
−       

= = = =       
       

.   

     Here , .AB AC D but B C= =   

 
Definition:  A non empty set S  together with the binary operation ∗ is said to be semi-group, if it 
satisfies  (1) Closure Property   (2)  Associative Property. 
 

A semigroup ( ),*M  with an identity element is called a monoid.   

A semigroup/monoid with commutative property is called commutative semigroup/monoid. 
 
Example:  Consider the set of natural numbers N . Then  

( ),N +   is a semi group   But   ( ),N −   is not a semi group 

( ),N   is a monoid    But ( ),N +   is not a monoid 

( )( ),P S    is a commutative semi group But ( )( ),P S    is not a monoid 

( )( ),P S    is a commutative semi group But ( )( ),P S    is a monoid 

 

Definition :  Let ( ),*S  be a semi group.  Let V  be 

a sub set of  S . If ( ),*V  satisfies properties of 

semigroup, it is called sub semigroup.  
 

Example:  Let ( ),Z +  be a semigroup.  Let V Z  

Definition :  Let ( ),*S  be a monoid.  Let V  be a 

sub set of  S . If ( ),*V  satisfies properties of 

monoid, it is called submonoid.  
 

Example:  Let ( ),N   be a monoid.  Let V N  
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Where V is the set of even positive integers.  Then 

( ),V +  is a semigroup and hence sub semigroup. 
Where V is the set of odd numbers.  Then ( ),V   is 

a monoid and hence submonoid. 
Example:  If S  denotes the set of positive integers 100 , for ,x y S , define * min{ , }x y x y= .  Verify 

whether ( ),*S  is a Monoid assuming that *  associative. 

 

Solution:  It is enough to show that ( ),*S  have identity element. 

Here 100 is the identity element since *100 min{ ,100}x x x= =  since 100x   for all x S .  Therefore it is 

a monoid.. 
 
Example:  Show that the set N  of natural numbers is a semigroup under the operation * ( , )x y Max x y= .  

Is it a monoid? 
 
Solution:  Let  , ,x y z N . 

  ( ) ( )

*( * ) * ( , ) ( * )* ( , )*

, ( , ) ( , ),

( , , ) ( , , )

x y z x Max y z x y z Max x y z

Max x Max y z Max Max x y z

Max x y z Max x y z

= =

= =

= =

 

Therefore *  is associative and hence ( ,*)N  is a semigroup. 

Let 1 N  and x N .   

Then *1 ( , 1) (1, ) 1* .x Max x Max x x x= = = =  

Therefore 1 N  is the identity and hence ( ,*)N  is a monoid. 

 

Example:  Prove that  5 [0], [1], [2], [3], [4]Z =  is an commutative monoid under multiplication modulo 5. 

 
Solution:  Consider the following multiplication modulo 5 table: 

5  [0]  [1]  [2]  [3]  [4]  

[0]  [0]  [0]  [0]  [0]  [0]  

[1]  [0]  [1]  [2]  [3]  [4]  

[2]  [0]  [2]  [4]  [1]  [3]  

[3]  [0]  [3]  [1]  [4]  [2]  

[4]  [0]  [4]  [3]  [2]  [1]  

 
The table shows 5z  is closed under multiplication modulo 5.  Also associative law is satisfied under 5 . 

From the table, [1]  is the identity element.   

Also 5 5 5[ ] [ ] [ ] [ ] [ ], [ ]a b b a a b Z =    .  Hence ( )5 5,z   is a commutative monoid. 
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Example:  If *  is the operation defined on S Q Q=  , the set of ordered pairs of rational numbers and 

given by  ( , )*( , ) ( , )a b x y ax ay b= + , show that ( ,*)S  is a semi group.  Is it commutative?  Also find the 

identity element of S .  

Solution:  Let ( , ), ( , ), ( , )a b x y c d S  

 ( , )*( , ) *( , ) ( , )*( , )

( , )

a b x y c d ax ay b c d

acx adx ay b

= +

= + +
 

 ( , )* ( , )*( , ) ( , )*( , )

( , )

a b x y c d a b xc xd y

acx adx ay b

= +

= + +
 

 Therefore *  is associative on S  and hence  ( ,*)S  is a semigroup. 

 Also ( , )*( , ) ( , ) ( , )*( , )a b x y ax ay b x y a b= +  .  Therefore *  is not commutative. 

 Let ( )1 2,e e be the identity element on ( ,*)S .  Then for ( ),a b S ,  

    

( ) ( ) ( )

( ) ( )

1 2

1 1 2

1 1

1 2

2

2

, * , ,

, ,

1

0

e e a b a b

e a e b e a b

e a a e

e b e b

b e b

e

=

+ =

 =  =

 + =

+ =

=

 

 Therefore the identity element is ( ) ( )1 2, 1,0e e =  

 

Example:  If *  is the binary operation defined on R , set of real numbers defined by * 2a b a b ab= + + .  

Is ( ),*R   a semi group?.  Find the identity element if it exists.  Which elements have inverses and  

what are they? 
 
Solution:  Let , ,a b c S  

( ) ( )

( )

( )( )

* * 2 *

2 2 2 4

2 4

a b c a b ab c

a b ab c ac bc abc

a b c ab bc ca abc

= + +

= + + + + + +

= + + + + + +

 

( ) ( )

( )

( )( )

* * * 2

2 2 2 4

2 4

a b c a b c bc

a b c bc ab ac abc

a b c ab bc ca abc

= + +

= + + + + + +

= + + + + + +

 

Therefore *  is associative on R  and hence  ( ),*R  is a semigroup. 

Also * 2a b a b ab= + +   and  * 2 2 *b a b a ba a b ab a b= + + = + + = .  Therefore *  is commutative on R   

Let e be the identity element on R .  Then for a R ,  

( )

*

2

1 2 0

0, 1 2 0

a e a

a e ae a

e a

e a

=

+ + =

+ =

= + 
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Let 1a−  be the inverse of an element a R .  Then 1*a a e− = . 

                                                                                                1 12 0a a aa− −+ + =  

       ( )1 1 2a a a− + = −  

       
( )

1 1
,

1 2 2

a
a a

a

− −
=  −

+
 

Example:  Prove that for any commutative monoid  ( , *)M , the set of idempotent elements of M  form a 

submonoid. 
 
Let ( , *)M  be the commutative monoid. 

Therefore the elements of M  satisfies the closure, associative property under the binary operation * and 
has identity element e M . 

Consider a set  N e=  and hence N M . 

Here the elements of N  satisfies closure and associative property.  Also it has identity element under the 
binary operation *.  Therefore N  is monoid and hence submonoid. 
 

Example:  Let ,*S   be a semi group such that for , , *x y S x x y = , where   ,S x y= .  Then prove that  

        (1)    * *x y y x=         (2)  *y y y=  

Proof:  Let ,*S   be a semi group such that for , , *x y S x x y = , where   ,S x y= .  

 

( )

( )

( ) *

* *

* *

*

i LHS x y

x x x

x x x

y x

RHS

=

=

=

=

=

 

(ii)  Since the binary operation *is associative  

*x y x or y= , because only two elements in , .x y S  

Let *x y x=  

Consider * ( * )*y y x x y= ,     by definition 

                            *( * )x x y= ,    associative law 

                             *x x= ,            by assumption 

                              y= ,                by definition 

 
                                                            

Example:  Show that a semigroup with more than one idempotent cannot be a group. 
 

Solution:  Let ( ),*S  be a semigroup.  Let ,a b S  be two idempotent elements. 

Then *a a a=  and *b b b= .  Assume that  ( ),*S  is a group. 

Then each element has its inverse i.e. 1*a a e− = .  By associative property, we have  

    ( ) ( )1 1* * * *a a a a a a− −=  

             1* *a a a e− =  

                      e a=  
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But in a group we cannot have two identities and hence ( ),*S  cannot be a group. 

 
Example:  If  S N N=  , the set of ordered pairs of positive integers with the operation * defined by 

( , )*( , ) ( , )a b c d ad bc bd= +  and if : ( ,*) ( , )f S Q→ +  is defined by  ( , )
a

f a b
b

= , then show that f  is a 

semigroup homomorphism. 
 
Solution:  Let ( , ), ( , ), ( , )a b c d e f S N N =   

 

( )

( , )*( , ) *( , ) ( , )*( , )

( ) ,

( , )

a b c d e f ad bc bd e f

ad bc f bde bdf

adf bcf bde bdf

= +

= + +

= + +

 

 

( )

( , )* ( , )*( , ) ( , )*( , )

( ),

( , )

a b c d e f a b cf de df

adf b cf de bdf

adf bcf bde bdf

= +

= + +

= + +

 

Therefore * is associative on S  and hence it is a semigroup. 

( ) ( )( , )*( , ) ,

( , ) ( , )

f a b c d f ad bc bd

ad bc

bd

a c

b d

f a b f c d

= +

+
=

= +

= +

 

Therefore f  is a semigroup homomorphism. 

 

Theorem:  Let ( ),*M  be a monoid.  Prove that there exists a subset MT M  such that ( ),*M  is isomorphic 

to the monoid ( ),T ; here MM  denotes the set of all mappings from M  to M  and  denotes the 

composition of mappings.  
 

Proof:  Given that ( ),*M  be a monoid.   

For each a M , we define a function :af M M→  such that ( ) * , .af x a x x M=    

Therefore M

af T M  . 

Define a mapping :g M T→  such that ( ) , .ag a f a M=    

Let ,a b M .  Then *a b M .  Therefore *( * ) a bg a b f= . 

But for x M , * ( ) ( * )*a bf x a b x=  

                                           *( * )a b x=  

                                           ( * )af b x=  

    ( )( )a bf f x=  
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   ( )( )a bf f x=  

Therefore  ( )*a b a bf f f=   and hence *( * ) ( ) ( )a b a bg a b f f f g a g b= = =  

Therefore g  is a homomorphism of ( ),*M  into ( ),T . 

Suppose ,a b M  such that a b= .  Then there exists a mapping ,a bf f  such that 

 

      a bf f=  

   ( ) ( )g a g b=     

Therefore g  is one-to-one and also by definition it is onto.  Hence g  is isomorphic. 

 
GROUPS 
 

Definition :  Let G  be a nonempty set with a binary operation ∗.  Then ( ),*G  is called a group if the 

axioms (i) associative law   (ii) existence of identity   (iii)  existence of inverse hold. 
 
A group G  is said to be abelian if it satisfies commutative property. 
 

Definition:  The number of elements in a group G , denoted by G  or ( )O G , is called the order of G . 

The order of an infinite group is infinity. 
 
Example :  Let p  be a prime number.  Then {0}pZ −  is a finite group with respect to multiplication 

modulo p .  Its order is  1p − . 

 

Definition:  Suppose a  is an element of a group G .  Then the least positive integer n  such that na e= , 
the identity, is called the order of the element  a .  If no such positive integer exists, then a  is said to be of 
infinite order. 
 

Example :  Let  * {0}Q Q= −  be the set of all nonzero rational number.  Then it is a group with respect to 

multiplication. 
 
The group *Q  is of infinite order.  Also (1) 1, ( 1) 2.O O= − =   All other elements are of infinite order. 

 
Problems on Groups 
 

Example :  Show that ( ),Z +  is a group. 

 
(i)  Let  ,a b Z , the set of integers. 

       Now a b Z+   

       i.e.  Z  is closed under addition 

Example :  Show that  ( )\ 0 ,Q   is a group. 

 

(i)  Let   , \ 0a b Q , the set of non zero rationals. 

       Now \{0}a b Q   

       i.e.  \{0}Q is closed under multiplication 
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(ii)  Let  , ,a b c Z ,  

        Now ( ) ( )a b c a b c+ + = + +  

        i.e. Z  is associative under addition 
 
(iii)  Let  a Z , then there exists 0 Z such that 

         0 0a a a+ = + =  

         i.e.  Z  has the identity element 
(iv)  Let  a Z , then there exists a Z−  such that 

       ( ) ( ) 0a a a a+ − = − + =  

       i.e. all elements of  Z  has inverse element 
 

Therefore  ( ),Z +  is a group. 

 
Also, Let  ,a b Z , then 

          a b b a+ = +  

  
i.e.  Addition is commutative in Z and hence  

( ),Z +  is an abelian group. 

(ii)  Let  , , \{0}a b c Q ,  

        Now ( ) ( )a b c a b c  =    

        i.e. \{0}Q is associative under multiplication 

 
(iii)  Let  \{0}a Q , then there exists 1 \{0}Q

such that 
         1 1a a a =  =  

         i.e.  \{0}Q  has the identity element 

 

(iv)  Let  \{0}a Q , then there exists 
1

\{0}Q
a


such that 

       
1 1

1a a
a a

 =  =  

       i.e. all elements of  \{0}Q  has inverse element 

 

Therefore   ( )\ 0 ,Q   is a group. 

 
Also, Let  , \{0}a b Q , then 

          a b b a =   

  
i.e.  Multiplication is commutative in \{0}Q and 

hence  ( )\ 0 ,Q  is an abelian group. 

  . 
Example :  Prove that {1, 1, , }G i i= − −  is a group 

under multiplication. 
 
Consider the following multiplication table: 
 

  1 −1 i −i 
1 1 −1 i −i 

−1 −1 1 −i i 

i i −i −1 1 

−i −i i 1 −1 
 

The table shows G  is closed under multiplication. 
 
Also G  is associative under multiplication. 
 
From the first column/row, we conclude that 1 is 
the identity element of G . 
 
Inverse of 1 is 1.          Inverse of −1  is  −1 
Inverse of i is  − I        Inverse of  −i is   i   
 
 

 
Symmetric Group nS  

A one-to-one mapping   of the set  1,2,...,n  onto itself is called a permutation.  Such a permutation may 

be denoted as follows where ( )iJ i= . 

1 2 3

1 2 3 .....

..... n

n

J J J J


 
=  
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The set of all such permutations ( ! )n numbers  is denoted by nS  forms a group under the binary operation 

composition.  It is called  symmetric group of degree n . 
 

Example :  Prove that the set of permutations on the set  1,2,3  is a group under composition of 

functions. 
 

Let the elements of 3S  are 1

1 2 3

1 2 3


 
=  
 

,   2

1 2 3

3 2 1


 
=  
 

,   3

1 2 3

2 3 1


 
=  
 

,   4

1 2 3

1 3 2


 
=  
 

, 

5

1 2 3

2 1 3


 
=  
 

,   6

1 2 3

3 1 2


 
=  
 

. 

Consider the composition table of  3S  

 

 1  2  3  
4  5  6  

1  1  2  3  
4  5  6  

2  2  1  5  6  3  
4  

3  3  
4  6  5  

2  1  

4  4  3  
2  1  6  5  

5  5  6  
4  3  

1  2  

6  6  5  
1  2  4  3  

 
The table shows 3S  is closed under composition. 

Also 3S  is associative under composition. 

From the first column/row, we conclude that 1  is the identity element of 3S . 

Inverse of 1  is 1 .           Inverse of 2   is  2          Inverse of 3  is  6          

Inverse of  4  is  4    Inverse of  5  is   5    Inverse of  6  is  3    

 
Dihedral Groups 
 
By considering the symmetries of regular polygons, we obtain certain permutation groups known as 
dihedral groups. 

 
Consider an equilateral triangle with vertices 1, 2, 3.  Consider all  
possible rotations and reflections which keeps the position of the  
triangle unchanged except the renaming the vertices.  The effect of  
the rotation/reflection can be expressed as the permutation. 
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Let 
1P  be the rotation of the triangle about the origin O  through 0  or 360 .  Then 1

1 2 3

1 2 3
P

 
=  
 

 

Let 
2P  be the rotation of the triangle about the origin O  through 120 .  Then 2

1 2 3

2 3 1
P

 
=  
 

 

Let 3P  be the rotation of the triangle about the origin O  through 240 .  Then 3

1 2 3

3 1 2
P

 
=  
 

 

Let 
4P  be the reflection of the triangle about the line 1A .  Then 4

1 2 3

1 3 2
P

 
=  
 

 

Let 5P  be the reflection of the triangle about the line 2B .  Then 5

1 2 3

3 2 1
P

 
=  
 

 

Let 6P  be the reflection of the triangle about the line 3C .  Then 4

1 2 3

2 1 3
P

 
=  
 

 

The set of permutations  3 1 2 3 4 5 6, , , , ,S P P P P P P=  together with composition  forms a group.  This  is 

denoted by ( )3,D  

 

To find the dihedral group ( )4,D  by considering the symmetries of a square 

 
Let 1P  be the rotation of the 

square about the origin O  
through 90 . 

 

Then 1

1 2 3 4

2 3 4 1
P

 
=  
 

 

 

Let 2P  be the rotation of the 

square about the origin O  
through 180 . 

 

Then 2

1 2 3 4

3 4 1 2
P

 
=  
 

 

  

Let 3P  be the rotation of the 

square about the origin O  
through 270 . 

 

Then 3

1 2 3 4

4 1 2 3
P

 
=  
 

 

Let 4P  be the rotation of the 

square about the origin O  
through 0  or 360 . 

 

Then 4

1 2 3 4

1 2 3 4
P

 
=  
 

 

Let 5P  be the reflection of the 

square about the line 1L . 

 

Then 5

1 2 3 4

4 3 2 1
P

 
=  
 

 

 
 

Let 6P  be the reflection of the square about the line 2L .  Then 6

1 2 3 4

2 1 4 3
P

 
=  
 

 

Let 7P  be the reflection of the square about the line 3L .  Then 7

1 2 3 4

1 4 3 2
P

 
=  
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Let 8P  be the reflection of the square about the line 4L .  Then 8

1 2 3 4

3 2 1 4
P

 
=  
 

 

The composition table for ( )4,D . 

 

 1P  
2P  3P  

4P  5P  6P  7P  8P  

1P  
2P  3P  

4P  
1P  8P  7P  5P  6P  

2P  3P  
4P  

1P  
2P  6P  5P  8P  7P  

3P  
4P  

1P  
2P  3P  7P  8P  6P  5P  

4P  
1P  

2P  3P  
4P  5P  6P  7P  8P  

5P  7P  6P  8P  5P  
4P  

2P  
1P  3P  

6P  8P  5P  7P  6P  
2P  

4P  3P  
1P  

7P  6P  8P  5P  7P  3P  
1P  4P  2P  

8P  5P  7P  6P  8P  
1P  3P  

2P  4P  

Example:  Prove that  [1], [2], [3], [4]G =  is an abelian group under multiplication modulo 5. 

 
Consider the following multiplication modulo 5 table: 

5  [1]  [2]  [3]  [4]  

[1]  [1]  [2]  [3]  [4]  

[2]  [2]  [4]  [1]  [3]  

[3]  [3]  [1]  [4]  [2]  

[4]  [4]  [3]  [2]  [1]  

 
The table shows G  is closed under multiplication modulo 5. 

Also G  is associative under multiplication modulo 5. 

From the first column/row, we conclude that [1]  is the identity element of G . 

Inverse of [1]  is [1]            Inverse of  [2]   is  [3]  

Inverse of  [3]  is  [2]          Inverse of  [4]  is  [4]    

Also 5 5 ,a b b a a b G =    .  Therefore G  is abelian. 

Example:  Let Q  be the set of all rational numbers other than 1 with the binary operation * defined by 

*a b a b ab= + − .  Prove that  \1, *G Q=  is a group. 

(i)  Let   \1, *G Q= . Let ,a b G .  Then 1, 1a b  .  To prove * 1a b = . 

Suppose * 1a b = .  Then 1a b ab+ − =  

        1 0a b ab+ − − =  



 

148 
https://doi.org/10.5281/zenodo.15287805 

        ( 1) ( 1) 0a b a− − − =  

        ( 1)(1 ) 0a b− − =  

         1 1,a or b = =   a contradiction. 

       Therefore  * 1a b   

Since ,a b  are rational,  a b ab+ −  is also rational.  Therefore ,a b G  then *a b G . 

Therefore *  is a binary operation on G . 

(ii)  To prove *  is associative. 

( ) ( ) ( )

( )

* * * * * ( )*

( )

a b c a b c bc a b c a b ab c

a b c bc a b c bc a b ab c a b ab c

a b c bc ab ac abc a b c bc ab ac abc

= + − = + −

= + + − − + − = + − + − + −

= + + − − − + = + + − − − +

 

 

 

(iii)  If  e  is the identity.  Then  * *a e e a a= = . 

   Let  *a e a=  

   Then  a e ae a+ − =  

    (1 ) 0e a− =  

                                                    0e G =   

(iv)  If b  is the inverse of  a ,  then 

* *a b b a e= = . 

      Let  *a b e=  

     0a b ab+ − =  

               (1 ) 0a b a+ − =  

                 
1

a
b G

a
 = 

−
 

 

Therefore ( ),*G  is a group. 

 

Example:  Let Z  be the group of integers with the binary operation * defined by * 2a b a b= + − , for all 

,a b Z .  Find the identity element of the group ( ),*Z . 

Given Z  be the group of integers.  The binary operation *  is defined as * 2a b a b= + − , for all 

,a b Z . 

Let e  be the identity element of   G .  Then, by definition of identity,  *a e a=  

                                                                                                                                     2a e a+ − =  

                                                                                                                                     2e a a= + −  

                    2e =  

Example:  Show that ( ),*Q+  is an abelian group, where * is defined by * , ,
2

ab
a b a b Q+=   . 
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Given Q+  is a set of positive rational numbers.  The binary operation * is defined by 

* , ,
2

ab
a b a b Q+=   . 

(i)   Let   ,a b Q+ .  Then *
2

ab
a b Q+=  .  Because product of two rational is rational and a rational 

divided by 2 is also rational.  Hence Q+  is closed under the binary operation. 

(ii)  Obviously Q+  is associative under the binary operation.  Because 

 
( ) ( )* * * * * *

2 2

4 4

bc ab
a b c a a b c c

abc abc

= =

= =

 

(iii)  Let e  be the identity element of   G .  Then  *a e a=  

                                                                                                 
2

a e
a=  

                                                                                                   2e Q+=   

(iv)  Let 1a−  be the inverse element of  a G .  Then, by definition of inverse,  1*a a e− =  

                                                                                                                                                    
1

2
2

a a−

=  

                                                                                                                                                       1 4
a Q

a

− +=   

Also * *
2 2

ab ba
a b b a= = =  

Therefore ( ),*Q+  is an abelian group. 

Example:  Examine whether : 0
a a

G a R
a a

  
=    

  
 is a commutative group under matrix 

multiplication, where R  is the set of all real numbers. 

Solution:  Let G  be the set of all 2 2  matrices of the form : 0
a a

a R
a a

 
  

 
 and the binary operation is 

matrix multiplication. 

Let ,
a a b b

A B G
a a b b

   
= =    
   

 where ,a b  are non zero real numbers.   
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Then 
2 2

2 2

a a b b ab ab
A B G

a a b b ab ab

     
 =  =      

     
.  Hence G  is closed under the matrix multiplication. 

Clearly matrix multiplication is associative. 

Let 
e e

E G
e e

 
=  
 

 be the identity matrix where 0e  .  Then A E A =  

                                                                                                                 
a a e e a a

a a e e a a

     
 =     

     
 

        
2 2

2 2

ae ae a a

ae ae a a

   
=   

   
 

      Therefore  2ae a=  

                              
1

2
e =  

 Therefore identity matrix 

1 1

2 2

1 1

2 2

E G

 
 

=  
 
 
 

 

 

Let 
1 1

1

1 1

a a
A G

a a

− −

−

− −

 
=  
 

 be the inverse element of  
a a

A
a a

 
=  
 

.  Then 1A A E− =  

       
1 1

1 1

1 1

2 2

1 1

2 2

a a a a

a a a a

− −

− −

 
   

 =    
    

 
 

 

       
1 1

1 1

1 1

2 2 2 2

1 12 2

2 2

aa aa

aa aa

− −

− −

 
  

=   
  
 
 

 

     Therefore 1 1
2

2
aa− =  

    1 1

4
a

a

− =  
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Therefore inverse element 1

1 1

4 4

1 1

4 4

a a
A G

a a

−

 
 

=  
 
 
 

 

Also 
2 2 2 2

2 2 2 2

a a b b ab ab ba ba
A B B A

a a b b ab ab ba ba

       
 =  = = =        

       
 

Hence given G  is commutative group under matrix multiplication. 

 

Example:  Prove that 
1 0 1 0 1 0 1 0

, , ,
0 1 0 1 0 1 0 1

G
 − −        

=         
− −        

 forms an abelian group under matrix 

multiplication.  
 

 Let  
1 0 1 0 1 0 1 0

, , ,
0 1 0 1 0 1 0 1

A B C D
− −       

= = = =       
− −       

 

 
1 0 1 0 1 0

0 1 0 1 0 1
AB B

− −    
= = =    
    

.  Similarly , , , , ,BA B CA C AC C DA D AD D AA A= = = = = =  

 
1 0 1 0 1 0

0 1 0 1 0 1
BB A

− −    
= = =    
    

   and   
1 0 1 0 1 0

0 1 0 1 0 1
CC A

    
= = =    

− −    
 

 
1 0 1 0 1 0

0 1 0 1 0 1
DD A

− −    
= = =    

− −    
 

 
1 0 1 0 1 0

0 1 0 1 0 1
BC D

− −    
= = =    

− −    
  and  

1 0 1 0 1 0

0 1 0 1 0 1
CB D

− −    
= = =    

− −    
 

 
1 0 1 0 1 0

0 1 0 1 0 1
BD C

− −    
= = =    

− −    
  and  

1 0 1 0 1 0

0 1 0 1 0 1
DB C

− −    
= = =    

− −    
 

 
1 0 1 0 1 0

0 1 0 1 0 1
CD B

− −    
= = =    

− −    
  and  

1 0 1 0 1 0

0 1 0 1 0 1
DC B

− −    
= = =    

− −    
 

   
Consider the composition table. 
From the table the matrix multiplication is closure and 
associative. 
Also the matrix A  is the identity element. 
Inverse of each element is itself. 

Also matrix multiplication is commutative.  Hence ( ),G   is an 

abelian group. 

 

 A B C D 

A A B C D 
B B A D C 
C C D A B 
D D C B A 
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Example:  Let S  be a nonempty set and ( )P S  denote the power set of S .  Verify  whether ( )( ),P S   is a 

group. 
 
Solution:  Let ( )P S  is the power set of  a non empty set S .  Given binary operation is  . 

Clearly intersection of any two sets of ( )P S  is in ( )P S .  Therefore   is closure on ( )P S . 

Obviously   is associative.  Since A S A =  for any set A , S  is the identity. 

Therefore ( )( ),P S   is a monoid. 

Consider the empty set  .  Here we cannot find a set A  in ( )P S  such that A A S  =  = . 

Hence   has no inverse in ( )P S .  Hence ( )( ),P S   is not a group. 

 
Properties of  Groups 

Theorem:  Let ( ),*G  be a group.  Then (i)  Identity element of G  is unique. 

(ii)  For any  a G , inverse of a  is unique.    (iii)  If an element a G  such that  *a a a= , then .a e=  
 
Proof:  (i)  Let there be two identity elements 1 2,e e of  G . 

 If 1e  is the identity, then 1 2 2*e e e= . 

 If 2e  is the identity, then 1 2 1*e e e= .  Therefore 1 1 2 2*e e e e= = .  i.e.  identity element is unique. 

 (ii)   Let e  be the identity element of and let a G  

                       Let 1 2,a a  be two inverses of  a .  Then 1 1* *a a e a a= =   and  2 2* *a a e a a= =  

         Consider 1*a a e=  

                                           ( )2 1 2* * *a a a a e= ,  pre multiply by 2a  

     ( )2 1 2* * *a a a a e= ,  by associative law 

                1 2* *e a a e= ,  by identity 

                                                              1 2a a=  

 Therefore, the inverse element is unique. 

(iii)  Let 1a−  be the inverses of the element  a .  Then 1 1* *a a e a a− −= = .   

         Let a G  such that  *a a a= .    

                                                   ( )1 1* * *a a a a a− −= ,  pre multiply by 1a−  

                                                   ( )1 1* * *a a a a a− −= ,  by associative law 

                                                                *e a e= ,             by inverse law 

                                                                      a e=  
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Theorem :  In any graph ( ),*G , show that ( )
1 1 1* *a b b a
− − −= , for all  ,a b G . 

 

We know that, if ,a b G  such that *a b e= , then b  is the inverse of a .  i.e.  1b a−= . 

 
Consider  

( ) ( ) ( )1 1 1 1

1

1

* * * * * *

* *

*

b a a b b a a b

b e b

b b

e

− − − −

−

−

=

=

=

=

 

Consider  

( ) ( ) ( )1 1 1 1

1

1

* * * * * *

* *

*

a b b a a b b a

a e a

a a

e

− − − −

−

−

=

=

=

=

 

 

Therefore, ( ) ( )1 1* *b a and a b− −   are inverses to each other.  i.e.  ( )
1 1 1* *a b b a
− − −=  

 
Theorem:  Show that if every element in a group is  
its own inverse, then the group must be abelian. 
 
Let ,a b G .  Then  ab G . 

Given that 1 1 1, , ( ) .a a b b ab ab− − −= = =  

But 1 1 1( )ab b a− − −=  

              ab ba=  

Therefore G  is abelian. 

 

Note:  Converse of the theorem is not true. 

Theorem:  If G is a group such that 2a e=  for all  
a G ,   show that G  must be abelian.  
 
Given 2a e= .   Premultiply by 1a− . 

Then 1 2 1a a a e− −=  

            1a a−=  for all a G . 
 
Let ,a b G .  Then  ab G . 

Therefore 1 1 1, , ( ) .a a b b ab ab− − −= = =  

But 1 1 1( )ab b a− − −=  

              ab ba=  

Therefore G  is abelian. 

Theorem:  Show that in a group ( ),*G  if for any  ,a b G , ( )
2 2 2* *a b a b= , then ( ),*G  is abelian. 

Given that ( )
2 2 2* *a b a b=   for any  ,a b G . 

 2 2*RHS a b=      ( )
2

*LHS a b=  

                        ( ) ( )* * *a a b b=               ( ) ( )* * *a b a b=  

                         ( )* * *a a b b=                   ( )* * *a b a b=      

            ( )* * *a a b b=                    ( )* * *a b a b=     

                          ( )* * *a a b b=                   ( )* * *a b a b=  
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 Therefore ( )* * *a a b b ( )* * *a b a b=  

   ( ) ( )* *a b b a= , by left and right cancellation law. 

 Therefore ( ),*G  is abelian. 

 

Theorem:  If ( ),*G  is abelian group, show that ( * ) *n n na b a b=  for all ,a b G  where n  is a positive 

integer. 
 
Proof:  Since 1 1 1( * ) *a b a b= ,  let the statement is true for 1n = . 

 Assume that the statement is true for n k=   i.e.  ( * ) *k k ka b a b=  

 Consider  
1

1 1

( * ) ( * ) *( * )

( * )*( * )

*( * )*

*( * )*

( * )*( * )

*

k k

k k

k k

k k

k k

k k

a b a b a b

a b a b

a b a b

a a b b

a a b b

a b

+

+ +

=

=

=

=

=

=

 

 Therefore the statement is true for 1n k= +  and hence it is true for .n N  

 Hence ( * ) *n n na b a b=  

 

Theorem:  If G  is a finite group, show that there exists a positive integer n  such that na e=  for a G . 
 

Let  a G .  Consider  2 3, , , .....a a a .  These are elements of G .  Since G  is finite, these elements cannot all 

be distinct.  Hence there exists integers ,r s  with 0, 0r s   such that  r sa a= .   

Therefore r s s sa a a a− −=  

                       ,r sa a e− =  where 0r s−  . 

 

Let   : ,qS q a e q Z += =  .  Here r s S−  .  Hence S  is a non empty set of natural numbers and therefore 

by well ordering principle S  has a least element say n .  Hence  na e= . 
 
Theorem:  Prove that identity is the only idempotent element in a group. 

Clearly, 2 .e e e e= = .  Hence e  is the idempotent element. 

Suppose let 2x x= . 

                      . .x x xe=  

             x e=  

Therefore, identity is the only idempotent element in a group. 
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SUBGROUPS AND CYCLIC GROUPS 
 
SUBGROUP 
 
A nonempty subset H  of a group G  is called a subgroup of G  if H  itself  is a group under the same 
binary operation of  G .  
 

Example:   ( ),Z +  is a sub group of ( ),Q + . 

  ( )2 ,Z +  is a sub group of ( ),Z + . 

 

Example:  Find all the non trivial sub groups of ( )6 6,z + . 

 

Consider the elements of the set             6 0 , 1 , 2 , 3 , 4 , 5Z =  and 6( ) 6O Z =  

Let H  be the subgroup of 6Z  then ( ) | 6O H .  Therefore the possible values of ( )O H  are 1, 2, 3 or 6. 

 ( ) 1 [0]O H H=  =  

 ( ) 2 [0], [ ]O H H x=  =  where  [2 ] 0 3. [0], [3]x x H=  =  =  

 ( ) 3 [0], [ ], [2 ]O H H x x=  =  where  [3 ] 0 2. [0], [2], [4]x x H=  =  =  

6( ) 6O H H Z=  =  

 

Example:  Find all the non trivial sub groups of ( )12 12,z + . 

Consider the elements of the set                         12 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11Z =  

Trivial subgroups are 12Z  and  0   under the binary operation 12+ .   

The non trivial subgroups are       1 0 , 4 , 8H = ,      2 0 , 6H = ,           3 0 , 3 , 6 , 9H = ,  

            4 0 , 2 , 4 , 6 , 8 , 10H =  

Properties of subgroup 
 
Theorem:  Prove that the identity of a subgroup is same as that of the group. 
 
Proof:  Let G  be the group with identity e .  Let H  be the subgroup of G .  

Suppose e  be the identity of the subgroup H . 

Let a H .  Then .a e a = . 

Also  a G .  Then .ae a=  

Therefore . .ae ae=  
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                      e e=  
 

Theorem:  (Necessary and Sufficient Condition) Show that a non empty subset H  of a group ( ),*G  is a 

subgroup of G  if and only if 1*a b H−   for all ,a b H . 

 

Proof:  Suppose ( ),*H  is a subgroup of ( ),*G .  i.e. ( ),*H  is a group. 

Therefore for any ,a b H , their inverses 1 1,a b− −  are in H . 

Consider 1,a b H−  .  Then by closure property, 1*a b H−   

Conversely, suppose that H  is a subset of ( ),*G  and 1*a b H−   for all ,a b H . 

Associate law is inherited by H  from G . 

So, for two elements ,a a H  then 1*a a e H− =  . 

Also, for two elements ,e a H  then 1 1*e a a H− −=  . 

Hence ( ),*H  is a group. 

 
Theorem:  The intersection of any two subgroups of a group G  is again a subgroup of G . 
 
Proof:  Let ,H K be two subgroups of G  and e  is the identity. 

By definition, e H  and e K , then e H K  .  Hence H K  is non empty. 

Let  ,a b H K  .  Then  ,a b H  and ,a b K . 

Since ,H K  are subgroups, 1*a b H−   and  1*a b K−  .  Therefore 1*a b H K−    

Hence H K  is a subgroup of G . 
 
Theorem:  The union of two subgroups of a group G  is a subgroup if and only if one is contained in the 
other group. 
 
Proof:  Let ,H K be two subgroups of G  and let H K  is also a subgroup of G . 

To prove of H K  or K H .  Suppose  assume that H K  and K H  

Now H K  implies there is an element a H  such that a K . 

Also H K  implies there is an element b K  such that b H . 

Clearly ,a b H K   and hence ab H K   

                                                         i.e.  ab H   or  ab K  

Suppose ab H . 

Then a H  implies 1a H−  . 

Suppose ab K . 

Then b K  implies 1b K−  . 
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 ( )1a ab b H− =   which is a contradiction.  ( ) 1ab b a K− =   which is a contradiction. 

Thus our assumption is wrong.  Therefore H K  or K H . 

Conversely, suppose that H K  or K H . 

Now H K  implies H K K =   and  K H  implies H K H = . 

But ,H K  are sub groups.  Hence H K  is also a subgroup of G . 

 

Example:  Consider the group ( ),Z + .  Then  2 ....., 4, 2, 0, 2, 4,.....Z = − −  and  3 ...., 6, 3, 0, 3, 6,.....Z = − −  

are the subgroups of ( ),Z + . 

Let  2 3 ...., 6, 4, 3, 2, 0, 2, 3, 4, ....H Z Z=  = − − − − .   

Here H  is not closed .  Hence H  is not a subgroup. 
 

Definition:  Let ( ),*H  be the subgroup of ( ),*G  and a  be any arbitrary element of G .  Then the set 

 * * :a H a h h H=   is called the left coset of H  determined by a  in  G .  Similarly, the set 

 * * :H a h a h H=   is called the right coset of H  determined by a  in  G . 

 
Note:  *a H  is denoted as aH  and *H a  is denoted as Ha . 

              (Number of cosets)(Number of elements of H ) = Number of elements of G . 
 
Example:  Consider the group {1, 1, , }G i i= − −  under multiplication. 

Let {1, 1}H = −  be the subset of G  and clearly H  is a subgroup of G . 

Let 1 G  and hence  1 {1 1, 1 ( 1)} 1, 1H =   − = −  is a left coset 

Let 1 G−   and hence  1 {( 1) 1, ( 1) ( 1)} 1, 1H−  = −  −  − = −  is a left coset 

Let i G  and hence  { 1, ( 1)} ,i H i i i i =   − = −  is a left coset 

Let i G−   and hence  {( ) 1, ( ) ( 1)} ,i H i i i i−  = −  −  − = −  is a left coset 

Note that the left cosets are either identical or disjoint and the union of left cosets is G . 

 
 

Example :  Let ( ),Z +  be the additive group of integers.  Let {....., 9, 6, 3, 0, 3, 6, 9, ......}H = − − − .   

Clearly H  is a subgroup of G . 
 
Let 0 Z  and hence 0 {....., 9, 6, 3, 0, 3, 6, 9, ......}H H+ = − − − =  is a right coset 

Let 1 Z  and hence 1 {....., 8, 5, 2, 1, 4, 7, 10, ......}H + = − − −  is a right coset 

Let 2 Z  and hence 2 {....., 7, 4, 1, 2, 5, 8, 11, ......}H + = − − −  is a right coset 
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Let 3 Z  and hence 3 {....., 6, 3, 0, 3, 6, 9, 12, ......}H + = − −  is a right coset 

Let 4 Z  and hence 4 {....., 5, 2, 1, 4, 7, 10, 13, ......}H + = − −  is a right coset 

Let 5 Z  and hence 5 {....., 4, 1, 2, 5, 8, 11, 14, ......}H + = − −  is a right coset 

Let 6 Z  and hence 6 {....., 3, 0, 3, 6, 9, 12, 15, ......}H + = −  is a right coset 

We observe that  

0 3 6 ............H H H+ = + = + =  

1 4 7 ............H H H+ = + = + =  

2 5 8 ............H H H+ = + = + =  

 

Similarly 

1 2 5 ............H H H− = + = + =  

2 1 4 ............H H H− = + = + =  

3 0 3 ............H H H− = + = + =  

 
Therefore the only three right cosets of  H  in  Z   are  , 1, 2H H H+ +  

 

Example:  Find the left cosets of  [0], [3]  in the group ( )6 6,Z + . 

 

Clearly  [0], [3]H =  is a subgroup of ( )6 6,Z +   where 6 {[0], [1], [2], [3], [4], [5]}Z =  

 

Let 6[0] Z  and hence 6[0] {[0], [3]}H H+ = =  is a left coset 

Let 6[1] Z  and hence 6[1] {[1], [4]}H+ =  is a left coset 

Let 6[2] Z  and hence 6[2] {[2], [5]}H+ =  is a left coset 

Let 6[3] Z  and hence 6[3] {[3], [0]}H+ =  is a left coset 

Let 6[4] Z  and hence 6[4] {[4], [1]}H+ =  is a left coset 

Let 6[5] Z  and hence 6[5] {[5], [2]}H+ =  is a left coset 

Therefore {[0], [3]}, {[1], [4]}, {[2], [5]}  are the three left cosets of H  in 6Z . 

 

 

 
 
Lagrange’s Theorem:  If G  is finite group and H  is a subgroup of  G , then prove that the order of H  
divides the order of  G . 
 
Proof:  The number of elements in a group is the order of elements of the group.  Let ,n m  be the orders 

of ,G H  respectively. 

 
Case (i):  Suppose 1m= .  Then { }H e= .  Here 1 divides n.  i.e. ( )O H  divides  ( )O G . 
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Case (ii):  Suppose m n= .  Then H G= .  Here m divides n.  i.e. ( )O H  divides  ( )O G . 

 
Case (ii):  Suppose m n .  Then H is a proper subgroup of G . 
 

 Let  1 2, , ,,,,,, mH h h h=  contains m distinct elements i.e. ( )O H m= . 

 Let  a G ,  and  1 2* , * , ....., * maH a h a h a h=  is the left coset of H  in G . 

We know that any two left cosets are either identical or disjoint.  Since G  finite, let there be k  left 

cosets of H  in G .  The distinct left cosets are 1 2, , ....., ka H a H a H . 

 

Also the union of elements of these left cosets is equal to G . 
i.e. 

1 2 3 ..... kG a H a H a H a H=      

i.e.  ( ) ( ) ( ) ( ) ( )1 2 3 ..... kO G O a H O a H O a H O a H= + + + +  

i.e.  ..... ( )n m m m m k times= + + + +  

i.e.  n mk=  

i.e.  
n

k
m
=  

i.e.  ( )O H  divides  ( )O G . 

 
Do you know:  In general, converse of Lagrange’s theorem is not true. 
                              The converse of the Lagrange’s theorem is true in case of finite cyclic group. 
    Any group of prime order has no proper subgroups. 
    Any group of order 8 cannot have subgroup of order 3, 5, 6 or 7   
 

Example:  Let G  be a group with subgroups H  and  K .  If 660, 66G K= = and ,K H G   what are 

the possible values of H ?. 

Solution:  From the given data, we observe that 
( ) ( ) ( )

, , .
( ) ( ) ( )

O G O G O H

O H O K O K
 

                                                                            i.e.  
660 660 ( )

, , .
( ) 66 66

O H

O H
 

Therefore ( )O H  must be multiple of 66 and less than 660. 

Therefore the possible values of H  are 66, 132, 198, 264, 330, 396, 462, 528, 594. 

 
Theorem:  The order of any element of a finite group G  divides the order of G . 

Proof:  Let G  be a group of order  n .  Let a G  be an element of order m . 

Then the order of ' 'a  is same as the order of cyclic subgroup H a= . 

By Lagrange’s theorem,  ( )O H  divides  ( )O G .  i.e. m  divides n . 
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Theorem:  Let G  be a group and let a G  be of order n .  Then for any integer m , ma e=  then n  divides 
m . 
 

Proof:  Given ma e= .  Since ( )O a n= , n  is the least positive integer such that  na e= . 

Divide n  by m .  By division algorithm, , 0 .m qn r r n= +    

Now ( ) .
q

m qn r qn r n r q r re a a a a a a e a a+= = = = = =  

If 0 r n  , then ra e= , a contradiction that n  is least such that na e= . 

Hence 0.r =   Therefore m qn=  i.e. n  divides m . 

 

Theorem:  If G  is a group of order n  and H  is a subgroup of G  of order m , then prove the following 
results: 

  (i)  a G  is any element, then the left coset aH  of H  in G  consists of as many elements as in H . 

 (ii)  Any two left cosets of H  in G  is either equal or disjoint. 

 (iii)  The index of H  in G  is an integer. 

 
Proof :  (i)  Let G  is a group of order n  and H  is a subgroup of G  of order m . 

 Let  1 2, , ,,,,,, mH h h h=  contains m distinct elements……..(1) 

 Let  a G ,  and  1 2* , * , ....., * maH a h a h a h=  is the left coset of H  in G . 

 Now we have to prove the left coset aH  contains m  elements.  i.e. all elements of aH  are distinct. 

 On the contrary, suppose * *i ja h a h= .   

Then by left cancellation law, i jh h= .   This is contradicts to (1). 

Therefore we conclude that H  and aH  have same number of elements say, m . 
 
 (ii)  To prove any two left cosets of H  in G  is either equal or disjoint . 

 Let aH  and bH  be two left cosets of H  in G .  Then aH  and bH  are either disjoint or equal. 

 If aH  and bH  are disjoint, there is nothing to prove. 

If aH  and bH  are not disjoint, then there is at least one element say ' 'c  which belongs to both 

aH  and bH . 

. .i e c aH and c bH   

1.c a h =   and   2.c b h=   for some  1 2,h h H   

1 2. .a h b h =  



 

161 
https://doi.org/10.5281/zenodo.15287805 

1 1

1 1 2 1. . . . . .i e a h h b h h− −=  

( )1

2 1. . . . .i e a e b h h−=  

3. . .i e a b h=   where 1

3 2 1.h h h H−=   

3. .a H bh H =  

( )3. .a H b h H =  

. .a H b H = ,   since 3 ,h H then 3h H H=  

 
  Therefore aH  and bH  are either disjoint or equal. 
 

(iii)  The number of distinct right(left) cosets of a subgroup H  of  a group G  is called the Index of 
the subgroup H  in G.    

 
 Index of H  in G = Number of distinct left(right cosets) 

                                             k=  

                                             
n

m
= ,  By Lagrange’s theorem 

                                             
( )

( )

O G

O H
=  

                                              = an integer 

 Remark:  (Index of H  in G) ( ) ( )O H O G =  

 
CYCLIC GROUP 
 

A group ( ),*G  is said to be cyclic group generated by an element a G  if every element of G  is an 

integral power of  a .  i.e.   :nG a n Z=  .   

Note:  The cyclic group G  generated by the element a  is denoted by  G a= . 

             A cyclic group may have more than one generator.   
 

Theorem:  If a  is a generator of a cyclic group, then 1a−  is also a generator. 
 

Proof:  Suppose G  is a cyclic group generated by  a .  Then x G  implies :nx a n Z=  . 

Also ( )1 .
n

nx a a
−

−= =   Therefore each element x G  is of the form ( )1
m

a− for some integer .m  

Therefore 1a−  is also a generator of G . 
Example:  Consider the group {1, 1, , }G i i= − −  under multiplication. 

 Here 1 2 3 41, 1, , 1.i i i i i= = − = − =   Therefore i  is the generator and hence G i= . 
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 i.e. G  is cyclic group with generator i . 

Note:  Here i−  is also another generator. 

Example:  The additive group of integers ( ),Z +  is a cyclic group generated by 1. 

Example: Is it true that ( )5 5,Z  a cyclic group?  Justify your answer. 

 Let           5 0 , 1 , 2 , 3 , 4=Z  and let    54a = Z   

    1

54 1 4a =  =        2

54 2 8 3a =  = =       3

54 3 12 2a =  = =

      4

54 4 16 1a =  = =       5

54 5 20 0a =  = =   

 Therefore  4a =  is the generator of 5Z  and hence ( )5 5,Z  is a cyclic group. 

Properties of cyclic group 

Theorem:  Prove that any cyclic group is abelian 

Proof:  Suppose G  is a cyclic group generated by  a .  Then  :nG a n Z=  . 

 Let ,x y  be any two elements in  G .  Then there exists  integers ,m n  such that  , .m nx a y a= =  

 Now  . .m n m n n mx y a a a a a y x+= = = =  

 Therefore G  is abelian. 

Do you know?  The converse is not true. 

Theorem:  Prove that a subgroup of a cyclic group is cyclic. 

Proof:  Suppose G  is a cyclic group generated by  a .  Then  :nG a n Z=  . 

Let H  be a sub group of  G .  Certainly the elements of H  are integrals powers of  a .  Of these powers, 
let m  be the least positive integer. 
 

Let b  be any element in  H .  Then b  is an integral power of  a , say  na .  Divide n  by  m .  Let q  be the 

quotient and r  be the remainder.  Then  , 0 .n qm r r m= +   . 

 

Now ma  is an element of  H .  Therefore ( )
q

ma  and its inverse ( )
q

ma
−

 are in H  .  But we have taken 

nb a H=  .  Therefore by closure property, ( ) ( ). .
q q

m n m qm r ra a a a a H
− −

+= =  . 

 
But  is the element with least positive power and 0 r m  .  This implies that  0r = , that is n mq= . 

i.e.  ,mqb a=  an integral powers of  ma .  Therefore H  is cyclic. 

 
 
Theorem:  Prove that any group of prime order is cyclic. 
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Proof:  Let G  be a group of order p , where p  is a prime number.  Then 1 2 3 ..........p or or or=  

If  1p = , then { }G e=  which trivially cyclic. 

If  2p  , there is at least one more element a  in G .   

In this case, let H  be the cyclic subgroup of G  generated by a  i.e.  H a= .   

Now by Lagrange’s theorem, ( )O H  divides  ( )O G , namely,  p .   

Since p  is prime,  ( ) .O H p=   Thus   2, , ....., .pH a a a a= =  

Therefore H  is a subgroup of G  and both H  and G  have the same order p .   

This implies that H  is an improper subgroup of G , that is  2, , ....., pG a a a a= =   which is cyclic. 

 
Theorem:  The order of an element of a finite 
group divides the order of  G . 
 
Proof:  Let G  be a finite group of order  n . 

               i.e.  ( )O G n=  

Let a G  and let ( ) .O a m=   Then ma e= . 

Let H  be the cyclic group generated by  a . 

Therefore ( ) ( ) .O a O H m= =  

But H  is the cyclic subgroup ofG . 

By Lagrange’s theorem, ( )O H  divides ( )O G . 

                                      i.e. ( )O a  divides ( )O G . 

                                     i.e.  m  divides  n . 

Theorem:  Let G  be a finite group of order  n  

and a G .  Then  na e= . 
 
Proof:  Since G  is finite group, a is of finite order. 

               Let  ( )O a m=  

Then m is the least positive integer such that 

ma e= .   

By previous theorem, ( )O a  divides ( )O G . 

                                               i.e.  m  divides  n . 

Therefore n mq=   (for some integer q ) 

 

Now ( )
q

n mq m qa a a e e= = = = . 

i.e.  na e= . 

 

Theorem:  Let ( ),*G  be a finite cyclic group generated by an element a G .  If G  is of order n , that is,     

                      | |G n= , then  na e= , so that   2 1, , ...., ,n nG a a a a e−= = .  Further more n  is a least positive  

                      integer for which na e= . 
 

Proof:   Given ( ),*G  is a finite cyclic group generated by an element a G  and | |G n= . 

To prove  n  is a least positive integer for which na e= .   

On the contrary, suppose there exists a positive integer m n  such that ma e= . 

Since G  is cyclic, any element of G can be expressed as ka  for some k Z . 
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Divide k  by m , let q  be the quotient and r  be the remainder such that 0 r m  .  Then k mq r= + . 

( )

*

*

*

*

k mq r

mq r

q
m r

q r

r

r

a a

a a

a a

e a

e a

a

+=

=

=

=

=

=

 

This means that every element of G  can be expressed as ra , where 0 r m  . 

i.e. G  has at most m  elements or order of G m n=  , which is a contradiction.  

i.e.  ma e= , for m n is not possible. 

Hence na e= , where n  is the least positive integer. 

Now let us prove that the elements 2 1, , ...., ,n na a a a e− =  are distinct. 

Suppose ,i ja a for i j n=    

     * *i i i ja a a a− −=  

     ,j ie a j i n−= −  , which is a contradiction. 

Hence the elements of G  are distinct. 
  
Normal Subgroup 
 
A subgroup H  of a group G  is said to be normal subgroup of G if and only if * *a H H a=  for all a G . 

or 

A subgroup H  of a group G  is said to be normal subgroup of G if 1* *a h a H−   for all h H , a G . 
 
Note:  If G is abelian, then every subgroup of G  is normal. 
 

Example:  Every subgroup of  ( )12 12,Z +  is normal. 

 

Let                         12 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11Z =  and              4 0 , 2 , 4 , 6 , 8 , 10H =  is a 

subgroup of 12Z and hence normal subgroup. 

 
Example:  Let {1, 1, , }G i i= − −  is a group under multiplication and {1, 1}H = − is a subgroup of G . 

 
To prove H  is normal subgroup. 
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Let 

11, 1a a G−= =   

Let 1h H=   

Now 

1 1 1 1 1aha H− =   =   

Let 11, 1a a G−= =   

Let 1h H= −   

Now 
1 1 ( 1) 1 1aha H− =  −  = −   

Let 11, 1a a G−= − = −   

Let 1h H=   

Now 
1 ( 1) 1 ( 1) 1aha H− = −   − =   

Let 

11, 1a a G−= − = −   

Let 1h H= −   

Now 
1

( 1) ( 1) ( 1) 1

aha

H

− =

−  −  − = − 
 

Let 

1,a i a i G−= = −   

Let 1h H=   

Now 

1

1 ( ) 1

aha

i i H

− =

  − = 
 

Let 1,a i a i G−= = −   

Let 1h H= −   

Now 

 
1

( 1) ( ) 1

aha

i i H

− =

 −  − = − 
 

Let 1,a i a i G−= − =   

Let 1h H=   

Now 

 
1

( ) 1 ( ) 1

aha

i i H

− =

−   = 
 

Let 1,a i a i G−= − =   

Let 1h H= −   

Now 

 
1

( ) ( 1) ( ) 1

aha

i i H

− =

−  −  = − 
 

 

Therefore H  is a normal subgroup of G since 1* *a h a H−   for all h H , a G . 
 
Properties of normal subgroup 
 
Theorem:  A subgroup H of a group G is a normal subgroup in G iff each left coset of H in G is equal to the 
right coset of H in G. 
 

Proof:  Suppose a subgroup H of a group G is a 
normal subgroup in G.  Then by definition,  

1* *a h a H−   for all h H , a G . 

Therefore 1* *a h a H− =  

( )1* * * *a H a a H a− =  

( ) ( )1* * * *a H a a H a− =  

( )* * *a H e H a=  

* *a H H a=  
i.e. left and right cosets are equal 

Conversely, suppose each left coset of H in G is 
equal to the right coset of H in G 

* *a H H a=  for all a G . 
1 1* * * *a H a H a a− −=  

1* * *a H a H e− =  
1* *a H a H− =  

Therefore 1* *a h a H−   for all h H , a G . 
i.e.  subgroup H of a group G is a normal subgroup 

in G. 
 

 
 
Theorem:  Prove that every subgroup of an abelian group is a normal subgroup. 
 

Proof:  Let ( ),*G  be an abelian group and let ( ),*H  be the subgroup of G . 

 Let 1,a a G−   and let h H . 

 Consider 1 1* * * *a h a a a h− −=  {since G is abelian} 

                                                        *e h=   {identity law} 
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                                                         h H=   

 Therefore ( ),*H  is the normal subgroup of G . 
 

Theorem:  Prove that the intersection of two normal subgroups of a group G  is again a normal subgroup  

of G . 

Proof:  Let H and K  be two normal subgroups of G .  Therefore H and K  are two subgroups of G . 

Therefore H K  is a subgroups of G . 

Let 1,a a G−   and let h H K  . 

Since H  is a normal subgroup, 1* *a h a H−  .  Also since K  is a normal subgroup, 1* *a h a K−  . 

Therefore 1* *a h a H K−   , for 1,a a G−   and h H K  . 

Hence H K  is a normal subgroup of G . 

Example:  If H  is a subgroup of G  such that 2x H  for every x G  prove that H  is a normal subgroup 

of G . 

Solution:  Let H  is a subgroup of G  such that 2x H  for every x G . 

For any a G  and h H , we have *a h G  then ( )
2

*a h H …..(1) 

Since  1a G−  , then ( )
2

1a H−  .   Also  1 2,h a H− −  , then 1 2*h a H− −  …...(2) 

From (1) and (2), ( )
2 1 2* * *a h h a H− −   

  

1 2

2

2

1

1

* * * * *

* * * *

* * *

* *

* *

a h a h h a H

a h a e a H

a h a a H

a h a H

a h a H

− −

−

−

−

−











 

 Therefore H  is a normal subgroup. 

 

HOMOMORPHISM OF GROUPS 

Definition:  Let ,*G  and ,H •  be two groups.  A mapping :f G H→  is called group homomorphism  

from ,*G  to ,H •   if for any ,a b G ,  ( ) ( ) ( )*f a b f a f b= . 

Note:  If f  is both one to one and onto, then f  called isomorphism. 
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Example:  Define ( ) ( ): , ,f R R+  → +  by 10( ) logf x x= . 

 Consider 

 

10

10 10

( ) log ( )

log ( ) log ( )

( ) ( )

f x y x y

x x

f x f y

 = 

= +

= +

 

 Therefore f  is a homomorphism. 

 

Example:  Let G  be the group of integers under addition and  1, 1H = −  is a group under multiplication. 

Define ( ) ( ): , ,f G H+ →   by 
1,

( )
1,

if x is even
f x

if x is odd
=
−

. 

Case 1:  Let  ,x y G .  Suppose both x  and y  are even.  Then x y+  is also even. 

Therefore ( ) 1, ( ) 1 ( ) 1f x f y and f x y= = + = . 

Now  ( ) ( ) ( )f x y f x f y+ =   and hence f  is a homomorphism 

Case 2:  Let  ,x y G .  Suppose both x  and y  are odd.  Then x y+  is even. 

Therefore ( ) 1, ( ) 1 ( ) 1f x f y and f x y= − = − + = . 

Now  ( ) ( ) ( )f x y f x f y+ =   and hence f  is a homomorphism 

Case 3:  Let  ,x y G .  Suppose x  is odd and y  is even.  Then x y+  is odd. 

Therefore ( ) 1, ( ) 1 ( ) 1f x f y and f x y= − = + = − . 

Now  ( ) ( ) ( )f x y f x f y+ =   and hence f  is a homomorphism 

 

Example:  Define ( ) ( ): , 2 ,f Z Z+ → +  by ( ) 2f x x= . 

Let  x y=  

2 2x y=  

( ) ( )f x f y=  

 f   is one-to-one 

Let 2 .y Z   Then y  is even. 

Then there exists x Z  such 
that  ( )f x y=  

2x y=  

2

y
x Z=   

 f   is  onto 

Consider 

( ) 2( )

2 2

( ) ( )

f x y x y

x y

f x f y

+ = +

= +

= +

 

 f  is a homomorphism and 

hence it is isomorphism. 
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Example:  Define ( ) ( ): , ,f R R++ →   by ( ) xf x e= . 

Let  x y=  

x ye e=  

( ) ( )f x f y=  

 f   is one-to-one 

Let .y R+   Then y  is positive. 

Then there exists x R  such 
that  ( )f x y=  

xe y=  

logx y R=   

 f   is  onto 

Consider 

( )( )

( ) ( )

x y

x y

f x y e

e e

f x f y

++ =

= 

= 

 

 f  is a homomorphism and 

hence it is isomorphism. 

 

Example:  Show that a mapping ( ) ( ): , ,f S T+ →   defined by ( ) 3xf x = ,  where S is the set of all rational  

numbers and T  is the set of all nonzero real numbers is a homomorphism but not an isomorphism. 

Solution:  Given ( ) 3xf x =  for all x S . 

  Let ,x y S . 

 Then ( ) 3 3 3 ( ) ( )x y x yf x y f x f y++ = =  =  .  Therefore f is a homomorphism. 

Let ( ) ( )f x f y=  

            3 3x y=  

              x y=  

Therefore f is one-to-one. 

But range of f  has no negative numbers 

and hence it is not onto.  i.e. for 3 T−   
there is no rational number x S  such 

that 3 3x = − . 

Therefore f is not an isomorphism 

 

Theorem:  The group ( ),n nZ +  is isomorphic to every cyclic group of order n . 

Proof:  Let G  be a finite cyclic group of order n . Let a G  be the generator. 

Therefore  2 1, , , ...., nG a e a a a −= = . 

Now define a map : nf Z G→  by ( ) ,kf k a=  for all nk Z . 

Suppose ( ) ( )f r f s=  where , nr s Z  

                       r sa a=  

                       r s s sa a a a− −=  

                     r sa e− =  
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Since ( )O a n= , it follows that n  divides r s− . 

But r n  and ,s n  we get r s=  and hence f  is one-to-one. 

Clearly f  is onto. 

Consider ( ) ( ) ( )r s r s

nf r s a a a f r f s++ = = = .  Therefore f  is homomorphism. 

Thus we conclude that ( ),n nZ +  is isomorphic to G . 

 

Theorem:  Let : ( ,*) : ( , )f G f G→   be a group homomorphism.  Then prove that  

(1)    ( )
1 1( ) ,f a f a a G
− −=     (2)  ( )f e is an identity of G ,  when e  is an identity of G . 

Proof:  Let  a G .  Let ,e e  be the identities of G  and G respectively. 

(1)  To prove   ( )
1 1( ) ,f a f a a G
− −=    

 Let  a G .  Then 1*a a e− = .                  Also  1 *a a e− =  

 Therefore ( ) ( )1*f a a f e e− = =    Therefore ( ) ( )1 *f a a f e e− = =  

         ( ) ( )1f a f a e−  =                      ( ) ( )1f a f a e−  =  

 Therefore, we have ( ) ( ) ( )1 1 ( )f a f a f a f a− − =   

 i.e.  ( )1f a−  is the inverse of  ( )f a .  i.e.    ( )
1 1( )f a f a
− −=  

i.e. group homomorphism preserves inverses. 

 
(2)  To prove  ( )f e is an identity of G ,  when e  is an identity of G . 

 
( )( ) *

( ) ( ).......(1) hom

f a f a e

f a f e f is a omorphism

=

= 

 

 Also ( ) ( ) ........... (2)f a f a e=   

 From (1) and (2),  ( ) ( ) ( )f a f e f a e =   

                                                                ( )f e e= ,     {by left cancellation law} 

 i.e. group homomorphism preserves identities. 

 

Theorem:  Let  :f G G→  be a group homomorphism.  Then if H  is a subgroup of G , then  

 ( ) ( ) :f H f h h H=   is a subgroup of G . 
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Proof:  Let ,e e  be the identities of G  and Grespectively. 

Let   ( ) ( ) :f H f h h H=  . 

Since H  is a sub group of G , e H .  Therefore ( )( )f e f H . 

To prove ( )f H  is a sub group, chose ( ),a b f H  and show that ( )1ab f H−   

Let ( ),a b f H .  Then there exists ,x y H  such that ( ), ( )a f x b f y= = . 

Therefore    ( ) ( )
11 1 1( ) ( ) ( )ab f x f y f x f y f xy
−− − −= = =  

Since H  is a sub group of G , 1,x y H xy H−   .   Therefore ( ) ( )1 1ab f xy f H− −=  . 

Therefore ( )f H  is a subgroup of G . 

 

Definition:  Let :f G H→  is a group homomorphism.  The kernel is defined as  : ( )K x G f x e=  =  

where e  is the identity element of H . 
 
Theorem:  Let :f G H→   be a homomorphism with kernal K .  Then prove that K  is a sub group of  

G . 

Proof:  Let ,e e  be the identities of G  and H respectively.  Let   : ( )K x G f x e=  = . 

Now e G  and ( )f e e= .  Therefore e K  and hence K  is non empty. 

Let ,a b K .  Then ( )f a e=  and  ( )f b e= . 

Consider  

( ) ( )

( )

1 1

1

1

( )

( ) ( )

f ab f a f b

f a f b

e e

e e

e

− −

−

−

=

=

 =

 =

=

 

 Therefore 1,a b K ab K−    and hence K  is a subgroup of G . 
 

Theorem:  Prove that the Kernal of a homomorphisms f  from ,*G  to ,H •  is a normal sub group of  

,*G . 

Proof :  Let : ,* ,f G H→ •  be a group homomorphism  with kernel K .  Then K  is a subgroup of  G . 

Let ,e e  be the identities of G  and H respectively. 

By definition kernel  : ( )K x G f x e=  =  



 

171 
https://doi.org/10.5281/zenodo.15287805 

Now e G  and ( )f e e= .  Therefore e K  and hence K  is non empty. 

Let ,a b K .  Then ( )f a e=  and  ( )f b e= . 

Consider ( ) ( ) ( )1 1*f a b f a f b− −=   {since f  is a homomorphism} 

                                     ( ) ( )
1

f a f b
−

=     

                                        ( )
1

e e
−

 =  

                                         e e =  

                                         e=  

Therefore 1*a b K−   and hence K  is a subgroup of  G . 

Now  let 1,a a G−   and let k K . 

Consider ( ) ( ) ( ) ( )1 1* *f a k a f a f k f a− −= •  

                                          ( ) ( )1f a e f a−= •  

                                             ( ) ( )
1

f a f a
−

= •     

                                             e=  

Therefore 1* *a k a K−   for all a G  and for all k K .   Therefore K  is a normal subgroup of  G . 

Theorem:  (Fundamental theorem of homomorphism) Let :f G G→  be a homomorphism of G  onto G  

with kernel K .  Then /G K G . 
 
Proof:  Let :f G G→  be a homomorphism of G  onto G .  Let Ker f = K .   ( ) ,f x e for x K G =    

Let ,e e  be the identities of G  and G  respectively. 

Let : /G G K →  be a homomorphism defined by ( ) ,g Kg g G =   . 

Define a mapping : /G K G →  by ( ) ( ),Kg f g g G =    

(i)  To prove   is well defined.  

Suppose 1 2 1 2Kg Kg g Kg=    

 
               1 2g kg =   for some k K  

   ( ) ( )1 2f g f kg =  

   ( ) ( ) ( )1 2f g f k f g = ,  since f  is a homomorphism 

   ( ) ( )1 2f g e f g = ,  since k K  
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   ( ) ( )1 2f g f g =  

   ( ) ( )1 2Kg Kg  =  

(ii)  To prove   is one-to-one.  

   Suppose ( ) ( ) ( ) ( )1 2 1 2Kg Kg f g f g =  =  

     ( ) ( )
1

1 2f g f g e
−

 =    

     ( ) ( )1

1 2f g f g e−  =  

     ( )1

1 2f g g e−  =  

     1

1 2g g K−   

     1 2g Kg   

     1 2Kg Kg =  

 
(iii)  To prove   is onto.  

 Let g G  .  Since f  is onto, there exists g G  such that ( ) .f g g=  

 Therefore there exists /Kg G K  such that ( ) ( ) .Kg f g g = =  

 Therefore   is onto. 

 
(iii)  To prove   is a homomorphism.  

 

( )( )  

 

( ) ( )

( ) ( )

1 2 1 2

1 2

1 2

1 2

Kg Kg Kg g

f g g

f g f g

Kg Kg

 

 

=  

=

=

=

 

 
Thus   is an isomorphism and hence  /G K G  

 

Theorem:  Let ( , *)G  be a group and let H  be a normal subgroup of  G .  If /G H  be the set  |aH a G   

then show that ( )/ ,G H   is a group, where  ( * )aH bH a b H = , for all * , * /a H b H G H .  Further,  

show that there exists a natural homomorphism : /f G G H→ .  

 

Proof:  Given quotient group /G H  * |a H a G=   
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(i)  To prove the operation   defined by * * ( * )a H b H a b H =  is well defined. 

Let a aH  and b bH .  Then a H aH =  and  b H bH = . 

To prove :  ( ) ( ) ( ) ( )aH bH a H b H  =    i.e.  ( ) ( )* *a b H a b H =  

Since a aH  and b bH , we have 
1 2,a ah b bh = =  for some 

1 2,h h H . 

Therefore  

( )  

1 2

1 1

1 2 1 1 3

3 2

4 3 2 4

, , ,

,

a b ah bh

ab b h b h N is normal subgroup of G h N a G then b h b h N

abh h

abh where h h h N

− −

  =

=   = 

=

= = 

 

 

Therefore .a b abH    Also a b a b H    . 

Since any two cosets are either identical or disjoint, abH a b H =   

                                                                                      i.e. ( ) ( )* *a b H a b H =  

Therefore the operation   is well defined. 

 

(ii)  To prove   is associative. 

 Let  * , * , * / .a H b H c H G H    Then   

( ) ( ) ( ) ( ) ( )

( )( )

( )( )

( )( ) ( )

( ) ( ) ( )

* * * * * *

* * *

* * *

* * *

* * *

a H b H c H a H b c H

a b c H

a b c H

a b H c H

a H b H c H

  =   

=

=

= 

=    

 

(iii)  Let e  be the identity of  G .  Then * /H e H G H=  . 

Then ( ) ( ) ( ) ( )* * * * *a H H a H e H a e H a H =  = = .   

 Similarly  ( )* *H a H a H =  

Therefore H  is the identity element of /G H . 

(iv)  Consider ( ) ( ) ( ) ( )1 1* * * * *a H a H a a H e H H− − = = = .   

          Similarly  ( ) ( )1 * *a H a H H−  = . 
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Therefore the inverse of ( )* /a H G H  is ( )1 * /a H G H−  . 

Therefore /G H  is a group., 

Existence of homomorphism: 

Consider the mapping : /f G G H→  defined as  ( ) * :f a a H a G=  . 

( ) ( ) ( )( * ) * * * * ( ) ( )f a b a b H a H b H f a f b= =  =   

 
Theorem:  Prove that every finite group of order n  is isomorphic to a permutation group of degree n . 

Proof:  Step 1:  To find the set of permutations. 

 Let G  be a finite group of order n .  Let  a G .  Define :af G G→  by ( )af x ax= . 

 Here af  is one to one function.  Because ( ) ( )a af x f y=  

                                                                                                        ax ay=  

                                                                                                           x y=  

 Also af  is on to function.  Let ( )ay f x ax= =  and hence 1x a y−=  

 Therefore if y G , then there exists 1x a y−=  such that ( )1 1( )a af x f a y aa y y− −= = = . 

 Therefore af  is bijective and also  is a permutation of n  elements of G .   

Let   ' :aG f a G=   

 Step 2:  To prove 'G  is a group.   Let  ,a bf f G . 

 Consider ( )  ( ) ( ) ( ) ( )( ) ( )a b a b a abf f x f f x f bx ab x f x G= = = =  . 

 Therefore G  is closed under composition of mapping and hence it is associative. 

 Since e G  be the identity element of G ,  ef G  is the identity element of G .   

Because ( ) .ef e e e e= = . 

 Consider ( )   ( )1 1 1

1 1( ) ( ) ( ) ( )( ) ( )a a ea a a
f f x f f x f ax a ax a a x ex f x− − −

− −= = = = = = . 

 Hence 1a
f −  is the inverse of  af . 

 Hence G  is a group of permutation. 

 To prove G  is isomorphic to G .  Define  :g G G→   by  ( ) ag a f= . 

  Let ( ) ( )g a g b=  

   a bf f=  

   ( ) ( )a bf x f x=  
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   ax bx=  

   a b= .  Hence  g  is one to one function. 

 Also for all af G  there is a G  such that ( ) ag a f= .  Hence g  is onto. 

 Consider ( ) abg ab f=  

                                              ( )abf x=  

                                              ( )ab x=  

                                               ( )( )ax bx=  

                                               ( ) ( )a bf x f x=  

                                               ( ) ( )g a g b=  

Hence g  is  one-one, onto homomorphism and hence g  is isomorphic. 

 
Algebraic Systems With Two Binary Operations 
 
Definition:  A non empty set R  together with the binary operations + and • is said to a Ring if,  

(1)  ( ),R +  is an abelian group 

(2)   • is associative 
(3)   • is distributive over addition 

 
Definition:  A ring R  is said to be commutative if the binary operation • is commutative. 
 
Example:  ( ) ( ) ( ), , , , , , , ,R Z Q+ • + • + •  are commutative rings. 

Example:  Prove that the set  4 [0], [1], [2], [3]Z =  is a commutative ring with respect to the binary  

operation 4+ and 4 . 

To prove ( )4 4,Z +  is an abelian group. 

 

4+  [0]  [1]  [2]  [3]  

[0]  [0]  [1]  [2]  [3]  

[1]  [1]  [2]  [3]  [0]  

[2]  [2]  [3]  [0]  [1]  

[3]  [3]  [0]  [1]  [2]  

 

From the table, 4+ is closure and associative. 

 [0]  is the identity under 4+ . 

Inverse of [0]  is  [0] .    Inverse of [1]  is  [3] . 

To prove 4  is associative 

4  [0]  [1]  [2]  [3]  

[0]  [0]  [0]  [0]  [0]  

[1]  [0]  [1]  [2]  [3]  

[2]  [0]  [2]  [0]  [2]  

[3]  [0]  [3]  [2]  [1]  

From the table 4  is associative. 

For example consider  
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Inverse of [2]  is  [2] .    Inverse of [3]  is  [1] . 

Also 4 4a b b a+ = + . 

Therefore ( )4 4,Z +  is an abelian group. 

( ) ( )4 4 4 4

4 4

[1] [2] [3] [1] [2] [3]

[1] [2] [2] [3]

[2] [2]

  =  

 = 

=

 

 

Also from the table 4  is commutative 

To prove 4  is distributive over addition i.e. ( ) ( ) ( )4 4 4 4 4a b c a b a c + =  +   

For example Consider, 

 

( ) ( ) ( )4 4 4 4 4

4 4

[1] [2] [3] [1] [2] [1] [3]

[1] [1] [2] [3]

[1] [1]

 + =  + 

 = +

=

 

 

Therefore  4Z  is a commutative ring with respect to the binary operation 4+ and 4 . 

 
Example:  Prove that the set M  of all n n  matrices with real elements is a non commutative ring with 
respect to matrix addition and matrix multiplication as binary operation. 
 
Solution:  Let M  be the set of all n n  matrices with real elements.   

 Closure        :  Sum of any two n n  matrices is also a n n  matrix 

 Associative :  Matrix addition is associative 

 Identity       :  (0)n n  is the identity element 

 Inverse        :   For any A M  then A M−   such that ( ) (0)n nA A + − =  

 Commutative:   For all , ,A B M A B B A + = +  

Therefore ( , )M +  is an abelian group. 

 Also matrix multiplication is associative and hence ( , )M   is a semi group. 

To prove matrix multiplication is distributive over matrix addition.  

i.e. ( ) ( ) ( )A B C A B A C + =  +   

For example Consider, 
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1 1 1 0 0 1 1 1 1 0 1 1 0 1

0 1 2 1 0 1 0 1 2 1 0 1 0 1

1 1 1 1 3 1 0 2

0 1 2 2 2 1 0 1

3 3 3 3

2 2 2 2

                  
 + =  +                   

                  

       
 = +       

       

   
=   

   

 

 

Since matrix multiplication is not commutative, ( , , )M +   is non commutative ring. 

Definition:  A ring R  is said to be a ring with identity if there exists an element a R  such that 

a e e a a• = • =  for all e R . 

Example:  ( ) ( ) ( ), , , , , , , ,R Z Q+ • + • + •  are rings with identity. 

Definition:  A non zero element a R  is a zero divisor if there exists a nonzero element b R  such that 

0ab = . 

Example:  In the Ring 12Z ,  [3] is a zero divisor because 12[3] [4] 0 = . 

Definition:  A commutative ring R  with a identity element e  is an integral domain if R  has no zero 

divisors.. 

Example:  7Z and Z  are integral domain. 

Example:  Show that ( ), ,Z +   is an integral domain where Z  is the set of all integers. 

Solution:  Let  Z  be the set of all integers and addition is the binary operation 

  Let  , ,a b c Z  

 Closure:  Sum of two integers is again an integer 

 Associative:  Addition is associative on Z  

 Identity :  0 is the additive identity 

 Inverse  :  For any a Z  there is a Z−   such that ( ) 0a a+ − =  

 Commutative:  a b b a+ = +  for all  ,a b Z  

 ( ),Z +  is an abelian group. 

 Multiplication is associative on Z  and 1 is the identity with respect to multiplication. 

 ( ),Z   is a Monoid. 

Also multiplication is commutative on Z  and it is distributive over addition. 

There is no non zero integers &a b  such that  0a b =  and 0a b+ = . 
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Therefore ( ), ,Z +   is without zero divisors and hence an integral domain. 

 

Example:  If ( ), , .R +  is a ring then prove that .0 0,a a R=    and 0  is the identity element in R  under 

addition. 
Proof:  Consider  

0 0 0

0 0 { }

0 0

a a

a a distributive property

a

• = • +

= • + •

= •

 

 
Definition:  A field is a system ( ), , .F +  satisfying the following conditions: 

(i)  ( ),F +  is an abelian group 

(ii)  ( ){0), .F −  is an abelian group 

(iii)  ( ). . . , ,a b c ab a c a b c F+ = +      

 
Example:  ( ) ( ) ( ), , , , , , , ,R C Q+ • + • + •  are fields under usual addition and multiplication. 

Example:  Give an example of an integral domain which is not a field. 

Consider the Ring of integers.  It is an infinite integral domain but not a field. 

Also Z  is an infinite integral domain but not a field. 

Note:  A finite integral domain is a field. 
EXERCISE 

 

1. Find all the left co-sets of {1, 1}H = −  in the group ( ),.G  where {1, 1, , }G i i= − − . 

2. Is it true that ( )5 5, 5Z  a cyclic group?  Justify your answer. 

3. Show that ( ),*Q+
 is an abelian group, where *  is defined by * , ,

2

ab
a b a b Q+=    . 

4. Let Z  be the group of integers with the binary operation * defined by * 2a b a b= + − , for all ,a b Z .  

Find the identity element of the group ( ),*Z . 

5. Give an example of an integral domain which is not a field. 

6. Prove that  [1], [2], [3], [4]G =  is an abelian group under multiplication modulo 5. 

7. Prove that the set  4 [0], [1], [2], [3]Z =  is a commutative ring with respect to the binary operation 4+

and 4 . 

8. Examine whether : 0
a a

G a R
a a

  
=    

  

 is a commutative group under matrix multiplication, where R  

is the set of all real numbers. 

9. Find the left cosets of  [0], [3]  in the group ( )6 6,Z + . 

10. Find the idempotent elements of  1, 1, ,G i i= − −  under the binary operation multiplication. 
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11. Find all the subgroups of ( )9 9,Z + . 

12. If *  is the operation defined on S Q Q=  , the set of ordered pairs of rational numbers and given by  

( , )*( , ) ( , )a b x y ax ay b= + , show that ( ,*)S  is a semi group.  Is it commutative?  Also find the identity 

element of S . 

13. Show that ( ), ,Z +   is an integral domain where Z  is the set of all integers. 

14. If ( ),Z +  and ( ),E +  where Z  is the set of all integers and E  is the set of all even integers.  Show that the 

two semigroups ( ),Z +  and ( ),E +  are isomorphic. 
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UNIT V −  LATTICES AND BOOLEAN ALGEBRA 

 

Relation is a fundamental concept in Set theory.  Equivalence relation, partial ordering and functions are 
special types of relations.  Recall the definition that a non empty set P  together with a relation   which is 
reflexive, anti-symmetric and transitive is called partially ordered set or poset, denotd by ( ),P .  In a poset 

if ba  , then ( ),a b R . In this chapter we introduce lattice as a partially ordered set with some additional 

characteristics and study its properties. 
 
Example:  Show that ( ),N  is a partially ordered set where N  is set of all positive integers and    is 

defined by nm   if and only if  n m−   is a non negative integer. 
 

Given  0, 1, 2, 3, ...........N = . 

The relation ( )R    is defined by nm   if and only if n m−   is a non negative integer. 

 
Here for all a N , 0a a− =   is a non negative integer and ( , )a a R .  Therefore the relation is reflexive. 

 
Suppose that for ,a b N , ,b a k− =  a non negative integer.  But ,a b k− = −  a negative integer.  If 

,a b b a k− = − =  a non negative integer then a b= .  Therefore if ( , ) ( , )a b R and b a R  , then a b= .  

Therefore relation is antisymmetric. 
 

Suppose that ( ) ( ), , ,a b b c R , then ,b a k− =  a non negative integer and ,c b l− =  a non negative integer. 

Adding, we have ( ) ( )b a c b k l− + − = +  

                                  ( ) ,c a k l− = +  a non negative integer 

                                   Therefore ( , )a c R  

Therefore ( ),N  is a partially ordered set 

 
Definition: Let ( ),P  be a poset.  The elements Ab,a   are said to be comparable if ba   or ab  . 

 

Example:  Consider the poset ( )|,Z +
.  Here 3, 8 are not comparable but 3, 9 are comparable. 

 
Definition: Let ( ),P  be a poset.  If every pair of elements of P  are comparable, then P  is called totally 

ordered set and the relation   is called total order.  A totally ordered set is called a chain. 
 
Example:  The set of real numbers with usual order   is a totally ordered set. 
 
 
Hasse Diagrams of Partially Ordered Sets  
 
A partial order ( ),P  can be represented by means of a diagram called Hasse diagram.  We discuss the 

procedure for constructing the Hasse diagram. 
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Let ( ),P  be a poset and Pb,a  .  Then the element a  is an immediate predecessor of b  then ba   and 

no element Pc  that lies between a  and b . 
 
Equivalently this can be stated as b  is an immediate successor of a  or b  covers a  denoted by ba  . 
 
The Hasse diagram of a finite partially ordered set P  is a directed graph whose vertices are elements of 
P  and there is an directed edge from a  to b  whenever ba   in P .   

 
Instead of drawing an directed edge from a  to b , it is customary to place b  higher than  a  and draw 
undirected line between them.  So the Hasse diagram of a finite poset is a undirected self loop free graph. 
 
Hint:  To obtain the Hasse diagram of a poset, first draw the directed graph of the relation ad then delete 
all loops and all edges implied by transitive property. Incomparable elements are placed in horizontal line. 
 

Example:  Draw the Hasse diagram of 50D  , the set of all positive 

divisors of 50. 
 

The elements of 50D  are  1, 2, 5, 10, 25, 50   

Here 2, 5 and 10, 25 pairs are incomparable and hence they are on 
the same level. 
 
Also 1<<2,  1<<5,  2<<10,  5<<10,   5<<25,   10<<50,  25<<50  

 
. 

Example:  Draw the Hasse diagram of  the poset  ( ),P  where  

 2, 3, 6, 12, 24, 36P =  and yx   if  y|x . 

  
Here the pairs 2, 3 and 24, 36 are incomparable and hence they 
are on the same level. 
Also 2<<6,  3<<6,   6<<12,   12<<24,   12<<36 

 

 
.Example:  Draw the Hasse diagram of  the poset  ( )( ),P S   

where ( )P S  is the power set of   , ,S a b c=  and A B  if A B

.  

Here  ( ) , { }, { }, { }, { , }, { , }, { , }, { , , }P S a b c a b b c a c a b c=  

The triplets { }, { }, { }a b c  and { , }, { , }, { , }a b b c a c  are incomparable 

and hence they are on the same level.   Also 

{ }, { }, { }a b c      and 

{ } { , }, { } { , }, { } { , }, { } { , }a a b a a c b a b b b c    ,  

{ } { , }, { } { , }c a c c b c  .   

Also { , } { , , }, { , } { , , }, { , } { , , }a b a b c a c a b c b c a b c    
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Special Elements in Posets 
 

Let ( ),P  be a poset.  An element Pa is the 

greatest element of P  if ax   for all Px . 

 

Let ( ),P  be a poset.  An element Pa is the least 

element of P  if xa   for all  Px . 

A element Pa  is called maximal element if a x   
for no Px . 

A element Pa  is called minimal element if 
x a  for no Px . 

 
Results: 

• The greatest (or least) element, if it exists, is unique. 
• A maximal (or minimal) element need not be unique 
• Maximal element need not be greatest element 
• Minimal element need not be least element 
• Maximal elements are at the top of the Hasse diagram 
• Minimal elements are at the bottom of the Hasse diagram 

 
 
Example:  Let  c,b,aS = .  Then ( )( ),SP  is a poset. 

 
Let   c,a,b,a,A =  

Then ( ),A  is a poset. 

 
Here   is the least element    

Because 
 

   c,a,b
,a,







 

 
A  has no greatest element. 

Because  c,ab   

 
But  c,a  is the maximal 

element.  Because there is no  
Ax  such that   xc,a  . 

 
Also   is the minimal 

element. Because there is no 
Ax  such that x . 

 
 

Let    c,b,a,c,a,b,aA =  

Then ( ),A  is a poset. 

 
There is no least element    
Because 
     c,ab,ba   

 
But A  has greatest element 
 c,b,a . Because 

       
       c,b,ac,b,a,c,b,ac,a

,c,b,ab,c,b,aa



 

 
Here  c,b,a  is the maximal 

element.  Because there is no   
Ax  such that   xc,b,a  . 

 
But  a  and  b  are the minimal 

elements. Because there is no 
Ax  such that  ax   and 

 bx  . 

Let   b,a,b,a,A =  

Then ( ),A  is a poset. 

 
Here   is the least element    

Because 
 

   b,a,b
,a,







 

 
Also A  has greatest element 
 b,a . Because 

       
     b,ab,a,b,a

,b,ab,b,aa




 

 
Here  b,a  is the maximal 

element.  Because there is no   
Ax  such that   xb,a  . 

 
Also   is the minimal 

element. Because there is no 
Ax  such that x . 
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Example:  Determine whether the posets P represented by Hasse diagram have a greatest and least 
element, minimal and maximal elements. 

   
 

2,3 have no 
predecessor and 
hence they are the 
minimal elements 

2,3 have no 
predecessor and 
hence they are the 
minimal elements 

1 has no predecessor and 
hence it is the minimal 
element 

 has no predecessor and hence 
it is the minimal element 

24, 36 have no 
successor and 
hence they are the 
maximal elements 

12 has no 
successor and 
hence it is the 
maximal element 

4, 18 have no successor 
and hence they are the 
maximal elements 

 c,b,a  has no successor and 

hence it is the maximal element  

There is no 
element Pa  such 
that xa   for all  

Px  and hence P 
has no least 
element 

There is no 
element Pa  
such that xa   for 
all  Px  and 
hence P has no 
least element 

The element 1 P  such 
that 1 x  for all  Px  
and hence 1 is the least 
element 

The element P   such that 

x   for all  Px  and hence   

is the least element 

There is no 
element Pa  such 
that x a  for all  

Px  and hence P 
has no greatest 
element 

The element 
12 P  such that 

12x   for all  Px  
and hence 12 is the 
greatest element 

There is no element 
Pa  such that x a  for 

all  Px  and hence P has 
no greatest element 

The element { , , }a b c P  such 

that { , , }x a b c  for all  Px  

and hence c,b,a  is the greatest 

element 

 
 
Definition:  A set with an ordering relation is well order if every non empty subset of the set has a least 
element. 
 
Example:  The set of positive integers with ordering    is well ordered. 
But the set of integers with ordering   is not well ordered, because the subset of negative integers has no 
least element. 
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Lower and Upper Bound 
 

Definition:  Let P  be a poset and Pb,a  .  

An element Pc  is the lower bound of  

 a  and b  if ac   and bc  , i.e. c  precedes  

 a  and b . 

Definition:  Let P  be a poset and Pb,a  .  

An element Pc  is the upper bound of  

 a  and b  if ca   and cb  , i.e. c  succeeds  

 a  and b . 

Example:  Consider the poset 

 76543 ,,,,P =  with the partial order 

relation  . 

Let  64,A =  be a sub set of  P . 

Here 64446343  ,&,  

Therefore the lower bounds of A are 3, 4. 

Example:  Consider the poset 

 76543 ,,,,P =  with the partial order 

relation  . 

Let  64,A =  be a sub set of  P . 

Here 4 6, 6 6 & 4 7, 6 7     

Therefore the upper bounds of A are 6, 7. 

Definition:  An element Ag   is called  

greatest lower bound(glb) of a  and b  if and 
only if ag   and bg   and gc    whenever   

c  is a lower bound of P . 

Definition:  An element Al  is called least 
upper bound(lub) of a  and b  if and only if 

la   and lb   and cl    whenever c  is a 

lower bound of P . 

Note:  In the above example 4 is the greatest 
lower bound of P . 

Note:  In the above example 6 is the least 
upper bound of P . 

Note:  The greatest lower bound of  b,a  is 

denoted by ba  or b*a  and is called meet 
or product. 

In the above example, 4=ba  or 4=b*a  

Note:  The least upper bound of  b,a  is 

denoted by ba  or ba  and is called join 
or sum. 

In the above example, 6=ba  or 6=ba  

 
Result: 

• A sub set A  of a poset may or may not have upper or lower bounds 
• An upper or lower bound may or may not belong to the subset A  itself. 
• More than one upper or lower bound may exist 
• The greatest element is always the least upper bound but the converse is not true. 
• The least element is always the greatest lower bound but the converse is not true 
• The LUB and GLB of a subset of a poset, if they exist, are unique. 

 
Theorem:  Show that least upper  bound of a sub set B  in  a poset ( ),A  is unique if it exist. 

Let  ,B a b= .  Let 
1 2,u u  be two different least upper bounds of B . 

By definition of upper bound, 
1 2 1 2, , ,a u a u b u b u    . 

Suppose 
1u is a LUB of  ,B a b=  then 

1 2u u  for any other upper bound 
2u  

Suppose 
2u is a LUB of  ,B a b=  then 

2 1u u  for any other upper bound 
1u  

Therefore by antisymmetric, 
1 2u u= . 
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Note:  The proof for uniqueness of GLB is analogous as LUB. 
Example:  Let  109321 ,,.....,,,P =  and the partial ordered relation be ‘divides’.  Discuss the lower and upper 

bounds of the given  subsets.   85,A = ,   52,A = ,   321 ,,A = ,   421 ,,A = . 

 

            (i)   Let  85,A =  be a sub set of  P . 

             Here 51  and 81 .  Hence P1  precedes every element of A   

             and it is the lower bound of  A .  

             But there is no element Pa  such that a5  and a8 .  Hence the 

              set A  has no upper bound. 

  

 (ii)   Let  52,A =  be a sub set of  P .  

Here 102  and 105  .  Hence P10  succeeds every element of A and it is the upper bound od A. 

Also  21  and 51 .  Hence P1  precedes every element of A and it is the lower bound of  A .  

 (iii)   Let  321 ,,A =  be a sub set of  P .     

 Clearly P1  precedes every element of A and it is the lower bound of  A . 

Clearly P6  succeeds every element of A and it is the upper bound of  A . 

(iv)   Let  421 ,,A =  be a sub set of  P .     

Clearly P1  precedes every element of A and it is the lower bound of  A .  Therefore   1421 =,,glb  

Also 444241  ,,  and 1 8, 2 8, 4 8   .  Hence 4, 8 P  succeeds every element of A and 

hence 4, 8 are the upper bound of  A . Therefore   4421 =,,lub  

Example:   Let  3015106532130 ,,,,,,,D =  and let the relation R  be divisor on 30D .  Find 

   i.   all the lower bounds of 10 and 15 ii.   the glb of 10 and 15 
  iii.  all upper bound of 10 and 15  iv.  the lub of 10 and 15 
  v.   draw the Hasse diagram 

(i)   Let  1510,A =  be a sub set of  30D .  Let the relation be divides 

Here 151101 |,|  and 155105 |,| .  Hence 3051 D,   precedes every element of A and hence 1, 5 are 

the lower bounds of  A .  
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            (ii)     51510 =,glb  

            (iii)   Here 30153010 |,| .   Hence 3030 D  succeeds every  

                      element of A  and hence 30 is the upper bounds of  A .  

 (iv)     301510 =,lub  

           (v)  The Hasse diagram 

 
Note: If the partial order is ‘divides’ then ( ) ( ) ( ) ( )y,xluby,xlcm&y,xglby,xgcd == .   

Example:  Verify the above note, with the poset or Hasse diagram of the previous example. 

Let {3, 5}A =  

Multiples of 3,5 are 
3, 6, 9, 12, 15, 18,...

5, 10, 15, 20, 25,.....
 

Least common multiple of A is 15 

Upper bounds of A are 15, 30 

Because 3|15,  5|15  and  3|30,  5|30  

Least upper bound of A is 15. 

Let {5, 6}A =  

Multiples of 5,6 are 
5, 10, 15, 20, 25, 30,...

6, 12, 18, 24, 30, 36.....
 

Least common multiple of A is 30 

Upper bound of A is 30 

Because 5|30,  6|30 

Least upper bound of A is 30. 

 

Let {6, 15}A =  

Divisors of 6, 15 are 
1, 2, 3, 6

1, 3, 5, 15
 

Greatest common divisors of A is 3 

Lower bounds of A are 1, 3 

Because 1|6,  1|15  and  3|6,  3|15  

Greatest lower bound of A is 3. 

 

Let {2, 30}A =  

Divisors of 2, 30 are 
1, 2

1, 2, 3, 5, 6, 10, 15, 30
 

Greatest common divisors of A is 2 

Lower bounds of A are 1, 2 

Because 1|2,  1|30  and  2|2,  2|30  

Greatest lower bound of A is 2. 

. 
 

Example:  Find the lower bound, GLB for { , }B d e=  and upper bound, 

LUB for { , , }A a b c=  of the posets whose Hasse diagrams is given here. 

 
Let { , , }A a b c= . 

The upper bounds of A are , .e f  

Therefore the LUB of A is .e  
 
Let { , }B d e=  

The lower bounds of A are , .a b  

Therefore the GLB of A is .b  

 

. 
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Example:  Find the lower and upper bounds of the sub sets { , , },A a b c=

{ , }B i h=  and { , , , }C a c d f= in the poset with the Hasse diagram given 

here. 
Also find the LUB and GLB of the sub set { , , }D b d g= , if they exist. 

 
Let { , , }A a b c= . 

The upper bounds of A are , , , .e f i h  

The lower bound of A is .a  
 
Let { , }B i h=  

The upper bound of B does not exist. 
The lower bounds of B are , , , , , .a b c d e f  

 
Let  { , , , }C a c d f= . 

The upper bounds of C are , , .f i h  

The lower bound of C is .a  
 

 

 

Example:  For the poset ( ) 3,5,9,15,24,45 ,| , draw the Hasse diagram and find  

(i) The maximal and minimal elements 
(ii) The greatest and least elements 
(iii) The upper bounds and LUB of {3,5} 
(iv) The lower bounds and GLB of {15, 45} 

 
(i) The minimal elements are 3, 5  and the maximal element is 45  

(ii) There exists no least or greatest elements  

(iii) Upper bounds of {3, 5} are 15, 45 and hence LUB of {3, 5} is 15 

(iv) Lower bounds of {15, 45} are 3, 5 and hence GLB of {15, 45} is 5 

 
 
Example:  Identify the maximal elements, minimal elements, least and greatest (if they exist) of the 
POSETs given by the following Hasse diagrams. 
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 POSET 1 POSET 2 

               Maximal Elements u e 

               Minimal Elements x a, b 

               Least Element x Does not exist 

               Greatest Element u e 

 
 
LATTICE 
 

A lattice is a poset ( ),L  in which every two element subset has a LUB and GLB.  It is denoted as ( ), ,L   . 

 
Example:  Let I  be the set of all positive integers 
and R  be the relation divides i.e. aRb  iff b|a . 

 
Then the poset ( )|,I  is a lattice in which join and 

meet of every pair of elements a  and b  is  

( )b,alcmba =  and ( )b,agcdba =  

Example:  Let ( )SP  be the power set of a non 

empty set S  and R  be the relation subset i.e. 
ARB  iff BA . 

 
Then the poset ( )( )|,SP   is a lattice in which join 

and meet of every pair of elements A  and B  is  
BABA =  and BABA =  

 
Example:  If ( )SP  is the power set of S and ,  are taken as join and meet, prove that ( )( ),SP  is a 

lattice.   
 

Let S  be a given set and ( )SP  be its power set.  Let  ( ),A B P S . 

Define a relation RA B  on ( )SP  if A BÍ .  Clearly the relation is reflexive, anti-symmetric and transitive.  

Hence ( )( ),SP  is a partially ordered set.   

 

To find the  ,LUB A B . 

We know that ( )A A B   and ( )B A B  . 

Therefore ( )A B  is the upper bound of  ,A B . 

Suppose A C  and B C , then A B C  . 

Hence ( )A B  is the least upper bound of  ,A B . 

To find the  ,GLB A B . 

We know that ( )A B A   and ( )A B B  . 

Therefore ( )A B  is the lower bound of  ,A B . 

Suppose C A  and C B , then C A B  . 

Hence ( )A B  is the greatest lower bound of 

 ,A B . 

 
i.e. every pair of elements of ( )SP  has both LUB and GLB under  .  Hence ( )( ),SP  is a lattice. 

 

Example :  Consider the set { }2, 3, 6, 12, 24, 36S =  with a binary operation division.  Clearly ( ), |S  is a 

poset.  But ( )2, 3GLB  and ( )24, 36LUB  does not exist in S .  Hence it is not a lattice. 

 
 
Example:  Consider the following Hasse diagrams of posets.  Check whether the poset is a lattice. 
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Here for any pair of elements of the poset LUB and 
GLB exists and hence the given poset is a lattice.   
 
For example: 
 

Let  ,A b c=  be a subset of the given poset 

Now upper bounds of A  are , .e f  

 LUB  ,b c b c e=  =  . 

 
Now lower bounds of A  is .a  

 GLB  ,b c b c a=  =  . 

Let  ,A b c=  be a subset of the given poset 

Now upper bounds of A  are , , .d e f  

But LUB  ,b c b c=  =  does not exist. 

 

Similarly consider a subset  ,B d e=  

Now lower bounds of B  are , , .a b c  

But GLB  ,d e d e=  =  does not exist. 

 
Therefore the given poset is not a lattice. 
 

 
 
Note:  The Hasse diagram of a lattice is always a combination of closed 
polygons because any two of its elements have a common predecessor 
and a common successor. 
 
Here given hasse diagram does not represent a lattice because a b  
does not exist. 

 
 
 
Theorem:  Every chain is a lattice. 
 
Proof:  Let ( ),L  be a chain and let ,a b L .  In a chain any pair of elements are comparable.   

Without loss of generality assume that a b . 
 

Clearly b  is a the upper bound of a  and b ……..(1) 

Suppose u  is any other upper bound of a  and b .  

Then a u  and b u ……(2) 

From (1) and (2), we conclude that b  is a the least 

upper bound of a  and b .   

Therefore .a b b =  

Also a  is a the lower bound of a  and b ……..(3) 

Suppose l  is any other lower bound of a  and b .  

Then l a  and l b ……(4) 

From (3) and (4), we conclude that a  is a the 

greatest lower bound of a  and b .   

Therefore .a b a =  

Since both LUB and GLB exists for any pair of elements, the chain ( ),L  is a lattice. 

 



190 

https://doi.org/10.5281/zenodo.15287996 

Definition:  A lattice L  is said to be complete if every subset of it has a LUB and GLB in L . 

Example :  The lattice ( )( ), ,L P S=    is complete.  

                     The lattice ( ),R   is not complete because each subset does not posses a unique  GLB. 

 
Note:  Every complete lattice is bounded 
             Every finite lattice is complete 
             Dual of the complete lattice is complete 
 
Principle of Duality 
 
When   is a partial ordering relation on a set, the converse   is also a partial ordering relation on the same 
set.  For example, if ‘divisor of’ is a partial ordering relation then ‘multiple of’ is also a partial ordering.   
 
Note:  LUB(A) with respect to   is same as GLB(A) with respect to   and vice versa. 

            If ( ),L  is a lattice, then ( ),L   is also a lattice.  Also the operations ,  in ( ),L  becomes  

            the operations ,  in ,  in ( ),L . 

 
Therefore any statement involving ,  in ( ),L  remains true if   is replaced by   and   is replaced by 

  and   is replaced by   . 
 
Properties:  Let ( ),L  be a lattice, then for Lc,b,a  , the following properties are hold.            

 
               aaa.i =                             and   aaa =                    Idempotent 

               abba.ii =         and   abba =                       Commutative 

               ( ) ( ) cbacba.iii =  and   ( ) ( ) cbacba =    Associative 

                ( ) abaa.iv =      and    ( ) abaa =                    Absorption 

 
Theorem:  Show that every ordered lattice ( ),L  satisfies the above properties of the algebraic lattice. 

 
We know that ( ),L  is said to be ordered lattice if for every ,a b L  both ,a b a b   exists.  The lattice 

( ), ,L    is called algebraic lattice. 

 
1.  Idempotent Property: 

( , ) ( )a a LUB a a LUB a a = = =  ( , ) ( )a a GLB a a GLB a a = = =  

 
2.  Commutative Property 

( , ) ( , )a b LUB a b LUB b a b a = = =   ( , ) ( , )a b GLB a b GLB b a b a = = =   

 
3.  Associative Property 

( )a b c   is the LUB of  ( )a b and c  

Therefore  ( )a b  ( )a b c   …..(1) 

                             c  ( )a b c   …..(2) 

( )a b c   is the LUB of a  and ( )b c  

Therefore ( )a a b c   …..(9) 

                    ( )b c a b c    …..(10) 
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Also ( )a b is the LUB of  a  and b  

Therefore  ( )a a b  …..(3) 

                     ( )b a b  …..(4) 

From (1), (3) by transitivity ( )a a b c   …..(5) 

From (1), (4) by transitivity ( )b a b c   …..(6) 

From (2), (6) by  join ( )b c a b c    …..(7) 

From (5), (7) by join ( ) ( )a b c a b c     …..(8) 

Also ( )b c  is the LUB of b  and c  

Therefore  ( )b b c  …..(11) 

                   ( )c b c  …..(12) 

From (10), (11) by transitivity ( )b a b c   ..(13) 

From (10), (12) by transitivity ( )c a b c   ..(14) 

From (9), (13) by join ( )a b a b c    …..(15) 

From (14), (15) by join ( ) ( )a b c a b c     ..(16) 

 

Combining (8) and (16), we have ( ) ( )a b c a b c  =    

 
Similarly we can prove the associative property for ‘meet’ or from the principle of duality it can be 
obtained. 
 
4.  Absorption Property 

( )a b is the GLB of  a  and b  

Therefore  ( )a b a  …..(1) 

                   Also a a …….(2) 

From (1) and (2) by join,  ( )a a b a   …..(3) 

But ( )a a b   is the LUB of a  and ( )a b . 

Therefore ( )a a a b   …..(4) 

From (3), (4)  ( )a a a b=    

( )a b is the LUB of  a  and b  

Therefore  ( )a a b  …..(5) 

                   Also a a …….(6) 

From (1) and (2) by meet,  ( )a a a b   …..(7) 

But ( )a a b   is the GLB of a  and ( )a b . 

Therefore ( )a a b a   …..(8) 

From (7), (8)  ( )a a b a  =  

 
5.  Property:  If ( ),L  be a lattice, for any ,a b L  ( )i a b b iff a b =       ( )ii a b a iff a b =   

 
Let a b  

Also b b  

Therefore a b b  …..(1) 

Since a b  is the LUB of ( , )a b ,  

we have b a b  ….(2) 
From (1) and (2)  a b b =  

 

Conversely, suppose a b b =  

Since a b  is the LUB of ( , )a b , a a b   

                                                   i.e.  a b  

Proof of (ii) is analogous to proof of (i) 
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6.  Isotonic Property:  If ( ),L  be a lattice, for any , ,a b c L  if ,b c  then ( )ii a b a c    

we know that if  x y x y y   = ……(1) 

                     Since b c b c c   =  

                             Also   a a a=   

Consider ( ) ( )a c a a b c =     

                            ( )a a b c=     

  ( )a b a c=     

    ( ) ( ) ( )a c a b a c =     

Therefore from (1), a b a c    

 

we know that if  x y x y x   = ……(1) 

                     Since b c b c b   =  

                             Also   a a a=   

Consider ( ) ( )a b a a b c =     

                            ( )a a b c=     

  ( )a b a c=     

    ( ) ( ) ( )a b a b a c =     

Therefore from (1), a b a c    

 

 

Example:  Let ( ),L  be a lattice.  If  a b c  , then ( )i a b b c =  .   

( ) ( ) ( ) ( )( )ii a b b c b a b a c   = =     

 Since a b ,  by property (5), we have a b b =   and  a b a =  
 Since b c ,  by property (5), we have b c c =   and  b c b =  
 
 Therefore combining the above,  a b b b c = =  , we get the first result  
 

Consider ( ) ( )a b b c a b b   =  = ….(1)  {given above} 

Since a c  by transitivity,  by property (5), we have a c c =   and  a c a =  

Therefore ( ) ( )a b a c b c b   =  = …….(2) 

 
Thus from (1) and (2), we get the second result. 

 
Example:  Show that in a lattice if ba   and dc   , then d*bc*a   and  dbca  . 
 
Let ( ),L  be a lattice and assume that  a b  and  c d . 

 
  ba  , we have c*bc*a     (Isotonic ) 
 
  dc  , we have d*bc*b     (Isotonic )  
 
  d*bc*a  , by transitive property. 
 

  ba  , we have cbca     (Isotonic ) 
 
  dc  , we have dbcb     (Isotonic )  
 
  dbca  , by transitive property. 
 

 
Theorem:  Let ( ),L  be a lattice in which * and   denote the operation of meet and join respectively.  

For any  bbaab*aba,Lb,a == . 
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Proof:  With usual notations, we have to prove that for any  , ,a b L a b a b a a b b    =   = . 

 
( )i a b a b b   =  

Given               a b  

Also                  b b  (reflexive) 

Therefore a b b   (definition)………(1) 

But             b a b  …….(2)   

Because a b  is LUB of ( ),a b  

Combining (1) & (2), we have a b b =  

( )ii a b b a b a =   =  

Given a b b =  

Consider  ( )a b a a b =    

                             a=  (absorption) 

 

( )iii a b a a b =    

Given a b a =  

Therefore a  is the greatest 

lower bound of a  and b . 

In particular a b . 

 

 
Theorem:  In a lattice ( ),L , then for any Lc,b,a  , prove that ( ) ( ) ( )cabacba   

 
We know that aba   

                Also  cbbba   

Therefore ba   is the lower bound of 

 cb,a  .  i.e.  ( )cbaba  ….(1) 

Similarly   aca   

         Also  cbcca   

Therefore ca  is the lower bound of 

 cb,a  .    i.e.  ( )cbaca  ….(2) 

 
Equations (1) and (2) shows that ( )cba   is the upper bound of   ca,ba   

i.e. ( ) ( ) ( )cbacaba   

i.e.  ( ) ( ) ( )cabacba   

 
 

Theorem:  In a lattice ( ),L , prove that ( ) ( ) ( )a b c a b a c       

 
We know that a a b   

                Also  b c b a b     

Therefore a b  is the upper bound of 

 ,a b c .  i.e.  ( )a b c a b    ….(1) 

Similarly   a a c   

                Also  b c c a c     

Therefore a c  is the upper bound of 

 ,a b c .    i.e.  ( )a b c a c    ….(2) 

 

Equations (1) and (2) shows that ( )a b c   is the lower bound of   ,a b a c   

i.e. ( ) ( ) ( )a b c a b a c       

 
Another Method: 
 
We know that a a b  and a a c   
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i.e. a  is the lower bound of a b and a c  

Therefore ( ) ( )a a b a c    ………(1) 

Also we know that b c b a b       and  b c c a c     

 
i.e. b c  is the lower bound of a b and a c  

Therefore ( ) ( )b c a b a c     …..(2) 

From (1) & (2), ( ) ( )a b a c   is the upper bound of  ,a b c  

i.e. ( ) ( ) ( )a b c a b a c       

 
Special Lattices 
 

Definition:  A non empty subset M  of a lattice ( ), ,L    is called a sublattice of  L , if M  is closed 

under both the operations  ,  .  i.e. if  ,a b M  then ,a b M a b M     . 

 

Example: ( ), |Z +  is a lattice.  Then ( ), |nD  is a sublattice where ,nD Z n+  is a positive integer. 

 
Example:  If nS  is the set of all divisors of the positive integers n  and aDb  if and only if  a  divides  b , 

prove that  24,S D  is a lattice.  Find also all the sublattices of  24D  that contain 5 or more elements. 

 

Here  4 24 1, 2, 3, 4, 6, 12, 24S D= =  and the Hasse Diagram is given 

here. 
 

Consider the poset  24,|D .  Clearly it is  reflexive, anti-symmetric and 

transitive and hence it is a poset. 
 

To prove  24,|D  is a lattice.  i.e. to prove any pair ( ) 24,x y D  has LUB 

and GLB. 
For 42Sy,x  , we define =y*x GLB = gcd ( )y,x  and  

                                              = yx  LUB = lcm ( )y,x  

Hence for any pair, GLB and LUB exists.  Therefore  24,|D  is a lattice. 
 

 
The sublattices of  24D  that contain 5 or more elements are {1, 2, 3, 6, 12}, {1, 2, 4, 6, 12}, {1, 2, 4, 8, 24}, 

{1, 2, 3, 6, 12, 24}, {1, 2, 4, 6, 12, 24}, {1, 2, 3, 4, 6, 12} and {2, 4, 6, 8, 12, 24}. 
 

Definition:  A lattice ( ), ,L    is said to have a lower bound, denoted by 0 , if 0 a  for all a L .  Similarly, 

a lattice ( ), ,L    is said to have a upper bound, denoted by 1 , if 1a   for all a L .  A lattice is said to be 

bounded if it has both a lower bound and upper bound. 
 
Note:  0 , 1 1, 0 0, 1a a a a a a =  =  =  =  
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Example:   
The lattice ( )P S  of all subsets of S  is a bounded lattice with  as a lower bound and S  as an upper 

bound. 
 
The set of non negative integers with usual ordering 0 1 2      has a lower bound 0 but there is no 

upper bound.  Hence it is not bounded. 
 
Example:  Every finite lattice is bounded 
 

Let  1 2, ,..... nL a a a=  is a finite lattice.  Then 
1 2 ..... na a a    and 

1 2 ..... na a a    are the lower and 

upper bounds of L  respectively.  Hence it is bounded. 
 

Definition:  If ( ), , , 0, 1L    is a bounded lattice and a L .  An element b L  is called complement of 

,a   if  1, 0.a b a b =  =  

 
Note:  Lower and upper bounds are complements to each other. 
             An element a L  may have more than one complement 

 An element a L  may or may not have complement 

              A lattice is called complemented lattice, if every element  of L  has at least one complement. 
 

           Here  1, 0.a b a b =  =  

           Also   1, 0.a c a c =  =  

 
           Therefore the complement of a  is b  and  c . 

 
 
Example:  Show that the lattice ( )P S , where ( )P S is the power set of a finite set S  is complemented. 

 

 We know that the complement of any subset A  of S is given by A S A= − . 
 

 Now  ( ) 1A S A − =  and ( ) 0A S A − = .  Because 

                         ( )A S A S − =   and  ( )A S A  − =  

 
Example:  If 42S  is the set of all divisors of 42 and D  is the relation “divisor of” on 42S , prove that  

 D,S42 is a complemented lattice. 

Given   4221147632142 ,,,,,,,S = .  For 42Sy,x  , 

we define =y*x GLB = gcd ( )y,x  and  = yx  LUB = lcm ( )y,x  

 
The zero element of the lattice is 1  and the unit element of the lattice is 
42.  
 
Therefore if  y  is a complement of  x , then =y*x 1 and = yx 42. 
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Consider the elements 1, 42 in 
42S  

=421* gcd ( ) 1=y,x  

=421 lcm ( ) 42=y,x  

Therefore the complement of 1 is 42. 

Similarly the complement of 42 is 1. 

Consider the elements 2, 21 in 
42S  

=212* gcd ( ) 1=y,x  

=212 lcm ( ) 42=y,x  

Therefore the complement of 2 is 21. 

Similarly the complement of 21 is 2. 

 

Consider the elements 3, 14 in 42S  

=143* gcd ( ) 1=y,x  

=143 lcm ( ) 42=y,x  

Therefore the complement of 3 is 14. 

Similarly the complement of 14 is 21. 

 

Consider the elements 6, 7 in 42S  

=76* gcd ( ) 1=y,x  

=76 lcm ( ) 42=y,x  

Therefore the complement of 6 is 7. 

Similarly the complement of 7 is 6. 

 
              Since every element of 42S  has a complements, it is a complemented lattice. 

 
Example:  If 45D  denotes the set of all divisors of 45 under divisibility ordering, find which elements have 

complements and which do not have complements. 
 

Given   4515953145 ,,,,,D = .   

For 45Dy,x  , we define *x y GLB= =gcd ( )y,x  and x y LUB = =  lcm

( )y,x  

Also we know that if  y  is a complement of  x ,  

then =y*x 1, the least element and  = yx 45, the greatest element of 45D  . 
 

.             
               Consider the elements 1, 45 in 45D  

               =451* gcd ( ) 1=y,x  

               =451 lcm ( ) 45=y,x  

               Therefore the complement of 1 is 45. 

               Similarly the complement of 45 is 1. 

Consider the elements 5, 9 in 45D  

=95* gcd ( ) 1=y,x  

=95 lcm ( ) 45=y,x  

Therefore the complement of 5 is 9. 

Similarly the complement of 9 is 5. 

 
Consider the elements 3, 15 in 45D  

=153* gcd ( ) 13 =y,x  

=153 lcm ( ) 4515 =y,x  

Therefore 3 and 15 have no complements 
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Example :  Find the complements, if they exist, of the elements of the c,b,a  of the lattice, whose 

Hasse diagram is given below.  Can the lattice be complemented? 
 

  If  y  is a complement of  x , then 0x y =  and 1x y = . 

             Clearly 0 and 1 are complements to each other. 

             Let x a= .  Then 0a y =  and 1a y = . 

                                      i.e. 0a b =  and 1a b = . 

             Therefore a  and b  are complements to each other.  

 
              Let x d= .  Then 0d y =  and 1d y = . 

                                       i.e. 0d e =  and 1d e = . 
             Therefore d  and e  are complements to each other. 
 
              Let x c= .  Then there exists no y  such that  0c y =  and 1c y = . 

 Because , , 1, 1c a c c b c c d c e =  =  =  =   and , , ,c a a c b b c d a c e b =  =  =  =  

               Therefore c  has no complement and hence the lattice is not complemented. 
 
Note:  Here a  and e  are complements to each other.  Also b  and d  are complements to each other 
 
Theorem:  Show that a chain with three or more elements is not complemented. 
 
Let ( ),L  be a chain with 3 or more elements.  Let 10 ,x,  be any three elements in the chain with least 

element 0 and greatest element 1.   
 
Since L  is a chain, it is totally ordered lattice.  Therefore any two elements are comparable with least and 
greatest element.  i.e.  10  x . 
 
Now  00 = x   and  xx =0 .  Also  xx =1   and  11 = x .   
This shows that x  has no complement and hence L  is not complemented. 
 

Definition:  A lattice ( ), ,L    is said to distributive, if for all , ,a b c L . Then 

( ) ( ) ( )a b c a b a c  =     

( ) ( ) ( )a b c a b a c  =     
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Example:  Verify whether the lattices given by the Hasse diagrams in following are distributive. 

 

Consider the lattice L  given in (a) 
 
Let 

2 2 2, ,a b c L  

 

( ) ( ) ( )2 2 2 2 2 2 2a b c a b a c  =     

              2 1 0 0a  =   

                    2 0a =  

( ) ( ) ( )2 2 2 2 2 2 2a b c a b a c  =     

             2 0 1 1a  =   

                   2 1a =  

Since distributive laws are not valid, it is not 
distributive lattice 

Consider the lattice L  given in (b) 
 
Let 

1 1 1, ,a b c L  

 

( ) ( ) ( )1 1 1 1 1 1 1a b c a b a c  =     

              1 1 0 0a b =   

                     0 0=  

( ) ( ) ( )1 1 1 1 1 1 1a b c a b a c  =     

             1 1 1 1a c =   

                      1 1=  
Here distributive laws are valid. 
 
But Consider 

( ) ( ) ( )1 1 1 1 1 1 1b a c b a b c  =     

            1 11 0b c =   

                  1 1b c  

Hence it is not distributive lattice. 
Example:  Give an example of a distributive lattice but not complemented. 
 

No complement exists for 0, , , , 1b c d .    

 
But it is distributive. 
 

 
Theorem:  Every chain is a distributive lattice. 
 

Let ( ),L   be a chain, then every elements are comparable.  Let , , .a b c L   Then a b and a c    or 

b a and c a   

 
Case(1)   a b and a c   

Therefore we have a b a =  

                                     a c a =  

Case(2)   b a and c a   

Therefore we have a b b =  

                                     a c c =  
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                                     a b c   

Therefore  ( )a b c a  =  

                      ( ) ( )a b a c a   =  

Equating LHS,  ( ) ( ) ( )a b c a b a c  =     

                                     b c a   

Therefore  ( )a b c b c  =   

                      ( ) ( )a b a c b c   =   

Equating LHS,  ( ) ( ) ( )a b c a b a c  =     

Therefore the chain ( ),L   is a distributive lattice. 

 
Theorem:  Show that cancellation laws are valid 
in a distributive lattice. 
 

Let ( ), ,L    be a distributive lattice and 

, , .a b c L    

We have to show that if a b a c =   and 

a b a c =   then b c= . 

 
Consider ( ) ( ) ( )a b c a c b c  =     

 ( ) ( ) ( )a c c a b b c  =     

                  ( ) ( )c b a b c=     

                               ( )c b a c=    

                               ( )c b a b=    

    c b=  

 

Theorem:  In a distributive lattice prove that 
c*ab*a =  and caba =  imply cb = . 

 
Let ( ),L  be a distributive lattice.  Given that  

c*ab*a =  and caba =   

   Let ( )ba*bb =               (Absorption law) 

             ( )ca*b =   (Given) 

 ( ) ( )c*ba*b =  (Distributive) 

 ( ) ( )c*bb*a =  (Commutative) 

 ( ) ( )c*bc*a =  (Given) 

 ( ) ( )b*ca*c =  (Commutative) 

 ( )ca*c =   (Distributive) 

 c=    (Absorption) 
 

 
 
Theorem:  In a distributive and complemented lattice, prove that complement of each element is unique 

Let ( ), ,L    be a distributive, complemented lattice.  Suppose a  and b  are two complements to x L . 

 Then by definition,   1 , 0x a x a =  =   and  1 0x b and x b =  = . 

 
              Now 0a a=   

                           ( )a x b=     {by assumption} 

  ( ) ( )a x a b=      {distributive} 

  ( )1 a b=     {by assumption} 

  ( )a b=   

 

Similarly      0b b=   

                           ( )b x a=     {by assumption} 

  ( ) ( )b x b a=      {distributive} 

  ( )1 b a=     {by assumption} 

  ( )b a=   

Since ( ) ( )b a a b =  , we get a b=  
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Example: In a distributive complemented lattice, show that the following are equivalent. 
 

 ( ) ( ) ( ) ( ) abbababa == 413021  

 

Let ( ), ,L    be a distributive, complemented lattice.  i.e. the lattice is distributive and each element 

has at least a complement. 
 

To Prove ( ) ( )1 2   

Let ,a b L .  Given  a b .    

Then a b b and a b a =  =  

 
 a b b =  

 ( )a b b b b  =   

 ( ) ( )a b b b b b   =   

 ( ) 0 0a b  =  

 ( ) 0a b =   

 

To Prove ( ) ( )2 3   

Let ,a b L .  Given  ( ) 0a b = .    

Taking complement on both sides, we have  

                         ( ) 0a b =  

                         1a b =  
                         1a b =  
 

To Prove ( ) ( )3 4   

Let ,a b L .  Given  1a b = . 

 

                      ( ) 1a b b b  =   {cancellation law} 

                       ( ) ( )a b b b b   =  

                       ( ) 0a b b  =  

                      ( )a b b =  

                        b a     
 

To Prove ( ) ( )4 1   

Let ,a b L .  Given  b a . 

Therefore   ( )a b b =  

                       ( )a b b =  

                       a b b =  
                        a b b =  
                           a b  
 

 
Theorem:  Establish De Morgan’s laws in a complemented, distributive lattice. 

 We know that if x  is the complement of  x , then 1= xx   and  0= xx . 

To prove ba   is the complement of  ba , we have to prove ( ) ( ) 1= baba  and 

( ) ( ) 0= baba . 

 Law ( i)   ( ) baba =


  

 Consider ( ) ( ) ( )  ( ) bbaabababa =  

                          ( )  ( ) abbbaa =  

                 ab = 11  

                                                                11=  

                                                                1=  
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 Consider ( ) ( ) ( )  ( ) babbaababa =  

                          ( )  ( ) abbbaa =  

                 ab = 00  

                                                                00=  

                                                                0=  

 This shows that ba    is the complement of  ba .  Hence ( ) baba =


  

 Law (ii)   ( ) baba =


  

To prove ba   is the complement of  ba , we have to prove ( ) ( ) 1= baba  and 

( ) ( ) 0= baba . 

 Consider ( ) ( ) ( )  ( ) babbaababa =  

                                                                ( )  ( ) abbbaa =  

                                                                   ab = 11  

                                                                11=  

                                                                1=  

 Consider ( ) ( ) ( )  ( ) bbaabababa =  

                                                                ( )  ( ) abbbaa =  

                                                                   ab = 00  

                                                                00=  

                                                                0=  

            This shows that ba    is the complement of  ba .  Hence ( ) baba =


  

 
Definition:  Let ( ) ( ) ,,S,*,,L  be two lattices.  Then the direct product of L  and S  is SL  and the 

operations are defined by  
( ) ( ) ( )21212211 bb,a*ab,ab,a =•  

( ) ( ) ( )21212211 bb,aab,ab,a =+  

 
The operations +  and •  are idempotent, commutative, associative and satisfy the absorption law 

because they are defined in terms of the operations *,  and , .  Therefore is ( ), ,L S • +  a lattice. 

 
Theorem:  The direct product of any two distributive lattices is a distributive lattice. 

Let  ( ) ( ) ,,S,*,,L  be distributive lattices.  Then  

( ) ( ) ( )c*ab*acb*a =  
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( ) ( ) ( )ca*bac*ba =  

( ) ( ) ( )cabacba =  

( ) ( ) ( )cabacba =  

Let ( ) ( ) ( )1 1 2 2 3 3, , , , ,a b a b a b L S   

Now  ( ) ( ) ( )  ( ) ( )323211332211 bb,aab,ab,ab,ab,a •=+•  

                                                            ( ) ( )( )321321 bbb,aa*a =  

                                                            ( ) ( ) ( ) ( )( )31213121 bbbb,a*aa*a =  

                                                            ( ) ( )31312121 bb,a*abb,a*a +=  

                                                            ( ) ( )  ( ) ( ) 33112211 b,ab,ab,ab,a •+•=  

Also ( ) ( ) ( )  ( ) ( )323211332211 bb,a*ab,ab,ab,ab,a +=•+  

                                                          ( ) ( )( )321321 bbb,a*aa =  

                                                          ( ) ( ) ( ) ( )( )31213121 bbbb,aa*aa =  

                                                          ( ) ( )31312121 bb,aabb,aa •=  

                                                           ( ) ( )  ( ) ( ) 33112211 b,ab,ab,ab,a +•+=  

Therefore ( ), ,L S • +  is a distributive lattice.   

 

Definition:  Let ( ), ,L   and ( ), ,M    are two lattices.  A mapping  :f L M→   is called a lattice 

homomorphism, if for any ,a b L ,  

( ) ( ) ( )f a b f a f b =   

( ) ( ) ( )f a b f a f b =   

 
Note:  A one-to-one homomorphism is said to be isomorphism. 

Example:  Show that the lattice ( ), |L  where  1,2,3,6L =  and the lattice ( )( ),M S   where  1 2,M a a=  

are isomorphic. 
 

 Here      1 2 1 2( ) , , , ,M S a a a a=  

 Define a mapping : ( )f L M S→  such that       1 2 1 2(1) , (2) , (3) , (6) ,f f a f a f a a= = = =  

 Then obviously f  is one-to-one and onto. 

 Here f  is a homomorphism.  Because 

  

( )

 1

1 2 (1) (2)

(1) (2)

f f f

f f

a



 

 

 = 

= 

= 

=

                         

( )

   

   

1 1

1 1

1 2 (1) (2)

(2) (2)

f f f

f f

a a

a a





 = 

= 

= 

=
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 Hence f  is an isomorphism. 

Modular Inequality:  If ( ),L   is a lattice, then for any , , ,a b c L a c   then ( ) ( )a b c a b c     . 

 
Since ,a c a c c  =  

By distributive property, ( ) ( ) ( )a b c a b a c       

                                          ( ) ( )a b c a b c     …..(1) 

                                          ( ) ( )a a b c a b c c        

                                             a c …..(2) 

From (1) and (2),  a c   ( ) ( )a b c a b c      

 

Definition:  A lattice L  is said to be modular if a c  then ( ) ( )a b c a b c  =    for all , , ,a b c L . 

 
Theorem:  Every distributive lattice is modular but not conversely. 
 

Let ( ),L   be a distributive lattice, then for any , , ,a b c L  ( ) ( ) ( )a b c a b a c  =    . 

 
If  a c then a c c  = . 

Therefore ( ) ( )a b c a b c  =   .  Hence ( ),L   is modular. 

 
Consider the Diamond lattice 5M  which is modular. 

Distributive Law :  ( ) ( ) ( )3121321 aaaaaaa =  

 
From the diagram       ( ) ( ) 11321 0 aaaaa ==  

 
   ( ) ( ) 1113121 == aaaa  

 
Since  ( ) ( ) ( )3121321 aaaaaaa  , the lattice is not 

distributive. 

 
Hasse diagram of 5M  

 
To prove diamond lattice M5 is Modular. 
 
For any ca,Lc,b,a   then ( ) ( ) cbacba =  

 
Suppose .ca =  

   ( ) ( ) cbacba =  

   ( ) ( ) cbccbc =  

                    cc =  
Hence the result is true. 
 

Suppose .ca    Since the diamond lattice is symmetric with respect to 321 a,a,a  it is enough to prove the 

result with respect to one of them, say 1a . 
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The condition ca   for 
1a  will be 11 a   and  

10 a . 

Let 11 a . 

Then 11 == c,aa . 

Therefore the condition becomes 

( ) ( ) cbacba =  

( ) ( ) 11 11 = baba  

baba = 11  

Hence the result is true 

Let 
10 a . 

Then 10 ac,a == . 

Therefore the condition becomes 

( ) ( ) cbacba =  

( ) ( ) 11 00 abab =  

11 abab =  

Hence the result is true 

 
Therefore the lattice is modular 

 
Example:  Prove that the lattice whose Hasse 
diagram is not modular 
 
For this lattice, when 

( ) ( ),a c a b c a b c      . 

Because  ( ) ( )0a b c a a  =  =    

and ( ) ( )1a b c c c  =  =  

 
 

 

 
 
Note:  If a lattice is not modular, it is not distributive. 
            A modular lattice need not be distributive. 
            Every chain is a modular lattice, because we cannot find , ,a b c L  such that a c  and b  is not           

             comparable with a or c . 
 
 
Boolean Algebra 
 
A lattice which is distributive and complemented is called a Boolean Algebra.  In Boolean Algebra, it is 

customary to use the symbol and+ •  instead of  and  .  It is denoted as  , , , ',0,1B + . 

 

If  , , , ',0,1B +  is a Boolean Algebra, then the following properties are hold for  , ,a b c B . 

 
Identity Laws: 0a a+ =  and  1a a=   
 
Commutative Laws: a b b a+ = +  and  a b b a=  

 
Associative Laws:  ( ) ( )a b c a b c+ + = + +  and  ( ) ( )a b c a b c=  

 
Distributive Laws: ( ) ( ) ( )a b c a b a c+ = +   and  ( ) ( ) ( )a b c a b a c+ = + +  
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Complement Laws: ' 0a a =   and  ' 1a a+ =  

 
Note:  Here 0  and 1 are symbolic form of lower and upper bounds 
            If a variable x  takes on only the values , it is called Boolean variable 
           Sometimes a b  may be written as ab  
            The distributive law ( ) ( ) ( )a b c a b a c+ = + +  does not hold good in ordinary algebra 

 
Example:  If {0, 1}B = and the operations , , '+ •   are defined as follows: 

 
Identity Laws: 0 0 0, 1 0 1+ = + =  and  0 1 0, 11 1= =   

 
Commutative Laws: 1 1 1 1 1, 1 0 0 1 1+ = + = + = + =  and  0 0 0 0 0, 0 1 1 0 0= = = =  

 
Associative Laws:  ( ) ( )a b c a b c+ + = + +  and  ( ) ( )a b c a b c=  

 
Distributive Laws: Obvious 
 
Complement Laws: 1' 0=   and  0' 1=  
 
Therefore {0, 1}B =  is the (only) two element Boolean Algebra. 

 
Note:  This is the only Boolean Algebra whose Hasse diagram is a chain. 
 

Example:  If ( )P S  is the power set of a set S , then  ( ), , ,P S    is a Boolean Algebra with 0 , 1 S= = .  

 
Let B,A and C  be any three elements of ( )SP  .  Now AA =   and ASA = . 

Hence the zero element is   and unit element is S  and identity laws are satisfied………..(1) 

 
Since ABBA =   and  ABBA = , the commutative laws are satisfied…..(2) 
 
Since  ( ) ( )CBACBA =  and  ( ) ( )CBACBA = , associative laws are satisfied……..(3) 

 
Since  ( ) ( ) ( )CABACBA =   and  ( ) ( ) ( )CABACBA = ,  distributive laws are 

satisfied……….(4) 
 
Let the complement of any set SA  is considered as A\S  or AS − , the relative complement of A  with 

respect to S . 
 
Therefore ( ) SASA =−  and ( ) =− ASA , the complement laws are satisfied. 

 
Theorem:  In a Boolean Algebra, prove that the complement of every element is unique. 
 

Let  , , , ',0,1B + be a Boolean Algebra.  Suppose a B  has two complements b  and  c B .   

Then by definition 
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 0a b =   and  1a b+ =  
 0a c =    and   1a c+ =  
 
Consider  1b b=             Similarly  1c c=  

                     ( )b a c= +      ( )c a b= +  

                     ( ) ( )b a b c= +      ( ) ( )c a c b= +   

                     ( )0 b c= +      ( )0 c b= +   

                      ( )b c=       ( )c b=  

 
                                             Hence, from the above cb =  
 
Example:  Show that nD  is a Boolean Algebra if n  is a square free,  i.e. n  is a product of distinct 

primes. 
 
Here nD  is a set of divisors of the number n  and let the relation be |, divides. 

 
Clearly, the relation is reflexive, antisymmetric and transitive and hence a partial order relation on nD . 

 

Therefore ( ), |nD  is a poset. 

Let  nx D  and let '
m

x
x

= .  Since m  is a product of distinct primes, x  and 'x  have different prime 

divisors.  Hence ( )' gcd , ' 1x x x x= =  and ( )' , 'x x lcm x x n+ = = .  Therefore complement exists. 

Also LUB and GLB exists.  Hence ( ), |nD  is a complemented distributive lattice. 

Therefore nD  is a Boolean algebra. 

 
Note:  The atoms of nD  are the prime divisors of  n . 

 
 
Example: Show that the lattice of positive divisors of 30 is a Boolean Algebra. 
 

Let  30 1, 2, 3, 5, 6, 10, 15, 30D =  and let the relation be |, divides. 

 
Clearly, the relation is reflexive, antisymmetric and transitive 
and hence a partial order relation on 30D . 

 

Therefore ( )30, |D  is a poset. 

Define ( )gcd ,a b a b=  and ( ),a b lcm a b+ =  for all 30,a b D . 

Since GLB and LUB exists, ( )30, |D  is a lattice. 

From the Hasse diagram, it is distributive lattice. 
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Here 1 is the least element and 30 is the greatest element. 
 

Here ( )2 15 gcd 2,15 1= =  and ( )2 15 2,15 30lcm+ = = .  Hence 2 and 15 are complements to each other. 

Similarly 3, 10 are complements to each other and 5, 6 are complements to each other. 
 

Therefore ( )30, |D  is complemented distributive lattice i.e. Boolean Algebra. 

 
Example:  Is a lattice of divisors of 32 a Boolean Algebra? 
 
The divisors of 32 is a chain.  We know that a chain with three or more elements is not complemented.  
Therefore the lattice is not complemented and hence not Boolean Algebra. 
 
 
Some Boolean Identities 
 
Idempotent Laws: ,x x x x x x+ = =  

                                 0x x= +                    {Identity} 
                                 .x x x x= +                {Complement} 
                                 ( ).( )x x x x x= + +   {Distributive} 

                                 ( ).1x x x= +             {Complement} 

                                 ( )x x x= +                {Identity} 

                           1x x=                    {Identity} 
                           ( )x x x x= +         {Complement} 

                           ( ) ( )x x x x x= +  {Distributive} 

                           ( ) 0x x x= +          {Complement} 

                           ( )x x x=                {Identity} 

 
Dominant Laws: 1 1, 0 0x x+ = =  

                     1 ( 1) 1x x+ = +               {Identity} 

                               ( 1) ( )x x x= + +   {Complement} 

                               (1 )x x= +            {Distributive} 

                               x x= +                  {Identity} 
                               1=                         {Complement} 

                      0 ( 0) 0x x= +               {Identity} 

                               ( 0) ( )x x x= +    {Complement} 

                               (0 )x x= +            {Distributive} 

                               x x=                     {Identity} 
                               0=                         {Complement} 

 
  
 
 
Absorption Laws: ( ) , ( )x x y x x x y x+ = + =  

 
( ) ( 0) ( )

(0 )

0

x x y x x y

x y

x

x

+ = + +

= +

= +

=

 

( ) ( 1) ( )

(1 )

1

x x y x x y

x y

x

x

+ = +

= +

=

=

 

 
 

De Morgan’s Laws: ( ) ,x y x y x y x y+ = = +  

Proof:  We know that if x  is the complement of  x , then 1=+ xx   and  0=• xx . 
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To prove ba •  is the complement of  ba + , we have to prove ( ) ( ) 1=•+ baba  and 

( ) ( ) 0=••+ baba . 

 Law ( i)   ( ) baba •=


+  

 Consider ( ) ( ) ( )  ( ) bbaabababa ++•++=•++  

                          ( )  ( ) abbbaa ++•++=  

                 ab +•+= 11  

                                                                11•=  

                                                                1=  

 Consider ( ) ( ) ( )  ( ) babbaababa ••+••=••+  

                          ( )  ( ) abbbaa ••+••=  

                 ab •+•= 00  

                                                                00+=  

                                                                0=  

 This shows that ba •   is the complement of  ba + .  Hence ( ) baba •=


+  

 By duality, ( ) baba +=


•  is true. 

 
Definition:   If A  is a non empty sub set of a Boolean Algebra B  such that A  it self is a Boolean Algebra 
with respect to the operation of  B , then A  is called a subalgebra of  B . 
 
Note:  if  |m n , then mD  is a sublattice of  nD .  This is true for subalgebra also. 

 
Definition:  A non least element a  in a Boolean algebra is called an atom if for every 

, 0x B x a a or x a  =  = . 

 
Note:  (1)   x a a a x =   .     (2)  0x a =  a  and x  are not connected. 

            (3)  Any element 0x   of B  can expressed uniquely as a sum of atoms. 
Example:  Consider the lattice 105D  with the partial ordered relation divides, then  

 i.    Draw the Hasse diagram of 105D  

 ii.   Find the complement of each elements of 105D  

 iii.  Find the set of atoms of 105D  

 iv.  Find the number of sub algebras of 105D  

 

 The elements of  105 1, 3, 5, 7, 15, 21, 35, 105D =   
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 Here3 35 (3,35) 1lcm = =  and 3 35 gcd(3,35) 105 = = .  Hence Complement of 3 is 35  

Similarly    Complement of 5 is 21 
 Complement of 7 is 15 and Complement of 1 is 105 
  

We know that a non least element a  in a Boolean algebra is called an atom if for every 
, 0x B x a a or x a  =  = .  Therefore set of atoms is { 3, 5, 7 } 

 
 To find sub algebras:   
 

 Here ( )105 8O D = .  Therefore subalgebras must contain 2 or 4 or 8 elements. 

105D  is a Boolean algebra with least element 1 and greatest element 105. 

Therefore Sub algebra with 2 elements is { 1, 105 } 
Also sub algebras with 8 elements is 105D  

 

Subalgebra with 4 elements is of the form  1, , ', 105x x .  Then  may be either 3  or  5  or  7. 

 
 Sub algebras with 4 elements is {1, 3, 35, 105},  {1, 5, 21, 105},  {1,  7,  15,  105} 
 {number of subalgebras with 4 elements equals (number of non bound elements/2)} 
  
 Hence there are 5 sub algebras 
 
Definition:  Two Boolean algebras 

1B  and 
2B  are said to be isomorphic if there is a one-to-one 

correspondence 1 2:f B B→  if ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ' ( ) 'i f x y f x f y ii f xy f x f y iii f x f x+ = + = =  

 
Theorem:  Let B  be a finite Boolean Algebra and let A  be the set of all atoms of B .  Then prove that the 
Boolean Algebra B  is isomorphic to the Boolean Algebra )A(P , where )A(P  is the power set of A . 

 
Let B  be a finite Boolean Algebra and let A  be the set of all atoms of B . 
 

  1 2 1 2 1 2 1 2, ,...., , , ,...., , , ,...., , , ,....,r s t kA a a a b b b c c c d d d=  

Let )A(P  be the power set of A . 

Define a mapping : ( )f B f A→  such that  1 2( ) , ,...., rf x a a a=  where 1 2 .... ra a a+ + +  is the unique 

representation of sum of atoms. 
 
By definition of atom, we have i i ia a a=  and 0i ja a = . 
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Let ,x y B  where 1 2 1 2.... ....r sx a a a b b b= + + + + + + +  and  1 2 1 2.... ....s ty b b b c c c= + + + + + + +  

 
Then 1 2 1 2 1 2.... .... ....r s tx y a a a b b b c c c+ = + + + + + + + + + + +  

             1 2 .... sxy b b b= + + +  

 

Now ( )  1 2 1 2 1 2, ,...., , , ,...., , , ,....,r s tf x y a a a b b b c c c+ =  

                           
   1 2 1 2 1 2 1 2, ,...., , , ,...., , ,...., , , ,....,

( ) ( )

r s s ta a a b b b b b b c c c

f x f y

= 

= 
 

 

Also ( )  1 2, ,...., sf xy b b b=  

                      
   1 2 1 2 1 2 1 2, ,...., , , ,...., , ,...., , , ,....,

( ) ( )

r s s ta a a b b b b b b c c c

f x f y

= 

= 
 

 
If  1 2 1 2.... ....t kz c c c d d d= + + + + + + + , then  1x y+ =   and  0xy = .  Hence z  is the complement of  x . 

 

Also ( )  1 2 1 2' , ,...., , , ,....,t kf x c c c d d d=  

                       1 2 1 2, ,...., , , ,...., 'r sa a a b b b=  

          ( )( ) 'f x=  

 
Since this representation is unique, f  is one-to-one and onto.  Hence f  is a Boolean algebra 

isomorphism.  
 

Note:  If a set A  has n  elements, then its power set )A(P  has 2n  elements. Thus a finite Boolean algebra 

has 2n  elements for some positive integer n . 
 
Example:  Is there a Boolean algebra with 5 elements? 
 

No.  Because each Boolean algebra is isomorphic to powerset algebra.  Therefore it must have 2n  

elements for some integer n  and 5 2n . 
 
 

Definition:  A mapping :f L S→  is said to be order preserving map from the Lattice ( ),*, ,L    to the 

Lattice ( ), , , 'S     if, ( ) ' ( ), , .a b f a f b a b L      

 
Theorem:  Let ( ),*,L  and ( ),,S  be any two lattices with the partial ordering   and   respectively.  If 

g  is a lattice homomorphism, then g  preserves the partial ordering.  (or)  Any Lattice homomorphism is 

order preserving.  (or)  Show that a lattice homomorphism on a Boolean Algebra which preserves 0 and 1 
is a Boolean homomorphism. 
 
Let :f L S→   be a Lattice homomorphism.  Let  ,a b L  such that a b . 
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Then { , }GLB a b a b a=  = ……..(1) 

Now  ( ) ( )f a b f a = , using (1) 

    ( ) ( ) ( )f a f b f a = ,   since f  is a 

homomorphism 

i.e. greatest lower bound of ( ) ( )&f a f b  is ( )f a . 

i.e.  ( ) ( ) ( )f a f b f a = . 

Therefore ( ) ( )'f a f b . 

Therefore f  is order preserving. 

 

Then { , }LUB a b a b b=  = ……..(2) 

Now  ( ) ( )f a b f b = , using (2) 

          ( ) ( ) ( )f a f b f b = ,   since f  is a 

homomorphism 

i.e. least upper bound of ( ) ( )f a and f b  is ( )f b . 

i.e.  ( ) ( ) ( )f a f b f b = . 

Therefore ( ) ( )'f a f b . 

Therefore f  is order preserving. 

 

 
Boolean Expression and Boolean Functions 
 
A Boolean expression in n  Boolean variables 1 2, ,..., nx x x  is a finite string of symbols formed recursively.  

Example:  ( ) ( , ) ( ) ( , ) ( ) ( , , ) ( ) ( , , )i f x y xy x ii f x y x xy iii f x y z xy y z iv f x y z xz x= + = + = + + = +  

 

A function 1 2: { , ,..., } {0, 1}n

nf B x x x B= →  is called a Boolean function of degree  n .  i.e. each Boolean 

expression represents a Boolean function, which is evaluated by substituting the values 0  or 1  for each 
variables.  The values of the function may be obtained by the truth tables. 
 

x  y  x y+  xy  

1 1 1 1 
1 0 1 0 
0 1 1 0 
0 0 0 0 

 
 

Note:  The number of different Boolean function : nf B B→  is 22
n

. 

 

Boolean product of all variables and its 
complements that appear exactly once is called 
minterm. 

Set of minterms in 2 variables:  , ' , ', ' 'ab a b ab a b  

Boolean sum of all variables and its complements 
that appear exactly once is called maxterm. 

Set of maxterms in 2 variables:  
, ' , ', ' 'a b a b a b a b+ + + +  

When a Boolean expression is expressed as a sum 
of minterms only is called disjunctive normal 
form(DNF). 

Example:  ( , , ) ' ' 'f a b c abc a bc a b c= + +  

When a Boolean expression is expressed as a 
product of maxterms only is called conjunctive 
normal form(CNF). 

Example:  ( , , ) ( )( ' )f a b c a b c a b c= + + + +  
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If a Boolean function is expressed by all its 
minterms, it is called complete DNF 

If a Boolean function is expressed by all its 
maxterms, it is called complete CNF 

 
Note:  Boolean expression expressed in terms of CNF or DNF is called canonical form. 
             Canonical form is obtained by either truth table method or algebraic method.  
 
Truth Table Method:  Form the truth table for the given Boolean function ( , , )f x y z , say.   

 
To find the DNF:  Note down the rows in which f  

column entry is 1. While writing the minterm 
corresponding to a row, entry 1 is replaced by the 
variable and entry 0 is replaced by the complement 
of the variables. 
 

To find the CNF:  Note down the rows in which f  

column entry is 0. While writing the maxterm 
corresponding to a row, entry 0 is replaced by the 
variable and entry 1 is replaced by the complement 
of the variables. 

x  y  z  f  

1 
1 
1 
1 
0 
0 
0 
0 

1 
1 
0 
0 
1 
1 
0 
0 

1 
0 
1 
0 
1 
0 
1 
0 

0 
1 
1 
0 
0 
1 
0 
1 

 

DNF :  xyz xyz xyz xyz+ + +  CNF:  ( )( )( )( )x y z x y z x y z x y z+ + + + + + + +  

 
Algebraic Method:   
 
To find DNF:  Express the function as a sum of product of variables.  In a product, if a term, say a , is missing, 
multiply by ( )a a+  which is equal to 1.  Then apply distributive law, if necessary.  Finally if a factor is 

repeated, it may be omitted because a a a+ = . 
 
To find CNF:  Express the function as a product of sum of variables.  In a sum, if a term, say a , is missing, 
add ( )a a  which is equal to 0.  Then apply distributive law, if necessary.  Finally if a factor is repeated, it 

may be omitted because a a a= . 
 
Example:  What values of the Boolean variables x  and y  satisfy yxxy += ? 

 
Let us find the values of the Boolean function  from the following table with the use of Boolean sum and 
Boolean product. 

x  y  xy  yx+  

1 
1 
0 
0 

1 
0 
1 
0 

1 
0 
0 
0 

1 
1 
1 
0 
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Compare the columns of xy  and yx+  .  The values in the respective columns are equal when 11 == y,x   

or  .y,x 00 ==    

Therefore we get yxxy +=  if and only if  11 == y,x   or  .y,x 00 ==  

 
Example:  Verify De Morgan’s Law with the use of Boolean sum and product.  
 

To verify:  (1) ( ) (2)x y x y x y x y+ = = +  

 
x  y  

x  y  x y  x y  x y+  yx+  x y+  x y  

1 
1 
0 
0 

1 
0 
1 
0 

0 
0 
1 
1 

0 
1 
0 
1 

1 
0 
0 
0 

0 
1 
1 
1 

0 
1 
1 
1 

1 
1 
1 
0 

0 
0 
0 
1 

0 
0 
0 
1 

 

From column 9 and 10 (1) ( )x y x y+ =  is proved and from columns 6 and 7 (2) x y x y= +  is proved. 

Example:  In any Boolean Algebra, show that ( )( )( ) ( )( )( )accbbaaccbba +++=+++  

                     ( )( )( ) ( )( )( )000 ++++++=+++ accbbaaccbba  

                             ( )( )( )b.baca.acbc.cba ++++++=  

                        ( )( )( )( )( )( )bac.bac.acb.acb.cba.cba ++++++++++++=  

                        ( )( )  ( )( )  ( )( ) bacbac.acbacb.cbacba ++++++++++++=  

                        ( )( )( )b.bac.a.acb.c.cba ++++++=  

                        ( )( )( )000 ++++++= ac.cb.ba  

                        ( )( )( )ac.cb.ba +++=   

 

Example:  In any Boolean Algebra, show that ( ) ( ) ( ) ( ) ( ) ( )a b b c c a a b b c c a     + + = + +  

 

                      

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

' ' '

' ' '

' ' '

' ' ' '

'

a b b c c a a b b c c a

a b c c b c a a c a b b

a b c a b c b c a b c a c a b c a b

b c a c a b a b c c a b a b c b c a

a b c c b c a a c a b b

a

     + + = + +

  = + + + + +

     = + + + + +

     = + + + + +          

 = + + + + +

= ( ) ( ) ( )

( ) ( ) ( )

1 1 1

'

b b c c a

a b b c c a

 + +

 = + +
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Example:  In any Boolean algebra show that bbabaa =+= 0 .  

               Let B  be a Boolean algebra and let  Bb,a  . 

               Suppose .a 0=   Then  bbb.b.baba =+=+=+ 010  

           Conversely, suppose bbaba =+ ……..(1) 

            Now 

                                 

( )

0 .

.

0

....(2)

b b

b ab a b

ab b a bb

ab a

ab

=

  = +

   = +

 = +

=

 

           Applying De Morgan’s law to (1), we have ( )( )babab ++=  

          Therefore  ba =0  

                                   ( )( )baba.a ++=  

                                   ( )( )baabaa ++=  

                                   ( )( )baab ++= 0  

                                   ( )ba.ab +=  

                                   ( )bababa +=  

                                   ( )0+= ab  

                                   ab=  

         Therefore baab ==0  

          Therefore ( ) a.abbabaab ==+=+= 10  

          Hence  .a 0=  

 
Example:  If ,x y  are elements in a Boolean algebra, prove that ' 'x y y x   .  

 
Since x y   implies x y x =  and  x y y =   

( )' ' ' 'x y x y y =  =    and   ( )' ' ' 'x y x y x =  = .   

Hence ' 'x y  

Conversely ' 'y x   implies ' ' 'y x y =  and  

' ' 'y x x = . 

Taking complements on both sides, we have  

 
( ) ( )' ' ' ' 'y x y

y x y

 =

 =
  and   

( ) ( )' ' ' ' 'y x x

y x x

 =

 =
.    

Hence ' 'x y  
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Example:  In any Boolean Algebra, prove the following statements are equivalent. 
 ( ) ( ) ( ) ( ) 041321 =•=+=•=+ babaababba  

 

Let  ( )1 a b b+ =  is true. 

Consider ( )a b a a b• = +   {Given} 

                            a=  {absorption law} 
 
Therefore (1) (2)  

 
 

Let ( )2 a b a• =  is true. 

Adding 'a  on both sides, we get 

                      ' 'a a b a a+ • = +  

        ( ) ( )' ' 1a a a b+ • + =  Distributive 

                 ( )1 ' 1a b• + =  

                ( )' 1a b+ =  

 
  Therefore (2) (3)  

Let  ( )3 ' 1a b+ =  is true. 

 
Taking complement 
( ) ' 1'a b + =  

       ' 0a b =  
 
Therefore (3) (4)  

 
Suppose (4) ' 0a b =  is true 

Adding b  on both sides, we have 

' 0a b b b+ = +  

( ) ( )'a b b b b+ + =  

( ) 1a b b+ =  

( )a b b+ =  

Therefore (4) (1)  

. 
Example:  Simplify the Boolean expression 

c.b.ac.b.ac.b.a ++  using Boolean algebra 
identities. 
 

( )

( )

( ) ( )

( )

( )

1

1

'

a b c a b c a b c a a b c a b c

b c a b c

b c a b c

b c a c

b c a c c

b c a

b c a

b c b a

          + + = + +

   = +

   = +

  = +

  = + +  

 = +  

 = +

 = +

 

Example:  Simplify the Boolean expression 
a b c a b c a b c    + +  using Boolean algebra 
identities. 
 

( ) ( )

( )

( )

( ) ( )

( )

' ' '

' ' 1

' '

'

1

' '

a b c a b c a b c a b c a b c c

a b c a b

a b c a b

b a a a c

b a c

b a b c

     + + = + +

= +

= +

= + +

= +

= +

 

. 
Example: In any Boolean Algebra, show that 0=+ b.ab.a  if and only if  ba = . 
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Let ba = .  Then 

. . . ' .

0 0

0

a b a b a a a a  + = +

= +

=

 

Suppose 0a b a b + = .  Then 

0a a+ =  

a a b a b a + + =  

( )a a b a b a + + =  

a a b a+ =   {absorption law} 

( ) ( )a a a b a+ + =   {Distributive} 

( )1 a b a+ =  

( )a b a+ = ….(1) 

 

Similarly 

0b b+ =  

b a b a b b + + =  

( )b a b a b b + + =  

'b a b b+ =   {absorption law} 

( ) ( )'b a b b b+ + =   {Distributive} 

( ) 1b a b+ =  

( )b a b+ = ….(2) 

From (1) and (2) , we have ba =   

 

 

Example: In a Boolean Algebra, show that ( ).a a b a+ =  for  ,a b B . 

 

  

( )

( )

1

1

1

a a b a a a b Distributive

a a b Identity

a a b Complement

a b Distributive

a Complement

a Complement

+ = +

= +

= +

= +

=

=

 

 

Example:  In any Boolean Algebra prove that ( )( )' ' ' 'a b a b a b a b +  = + +  

   

  ( ) ( ) ( ) ( )' ' ' 'a b a b a b a a b b+  + = +  + +   

                                ' ' ' 'a a b a a b b b=  +  +  +   

                                                          0 ' ' 0b a a b= +  +  +  

                                                          ' 'a b a b=  +   
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EXERCISE 
 

 
1. The following is the Hasse diagram of a partially ordered set.  Verify whether it is a Lattice. 

 
 
 

2.         Let ( )12D  denote the set of all positive divisors of 12.  Draw the Hasse diagram of ( )12D  

 
3. Draw the Hasse diagram for  ( )   ( )  1264321224126321 21 ,,,,,P,,,,P ==  and   is a relation such 

that yx   if and only if y|x . 

 
4. Check whether the posets ( ) D,,,, 9631   and  ( ) D,,,, 1252551  are lattices or not.  Justify your claim. 

 
5. Draw the Hasse diagram of  ( ),X , where  25201210542 ,,,,,,X =  and the relation   be such that 

yx   if x  divides y  . 

 
6.  Prove that 110D , the set of all positive divisors of a positive integer 110, is a Boolean Algebra and 

find all its sub algebras. 
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7. Let ( ),*,L  and ( ),,S  be any two lattices with the partial ordering   and   respectively.  If g  is 

a lattice homomorphism, then g  preserves the partial ordering. 

 
8. Show that a complemented, distributive lattice is a Boolean Algebra. 
 
9. Show that every non empty subset of a lattice has a least upper bound and greatest lower bound. 
 
10. Show that every totally ordered set is a lattice. 
 
11. Show that every non empty subset of a lattice has a least upper bound and greatest lower bound. 
 
12. Is a Boolean Algebra contains six elements?  Justify your answer. 
 
13. Show that in any Boolean Algebra ( )( ) bcbaaccaba ++=++ . 
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